Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 376(6589): 180-183, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35389775

RESUMO

Spike architecture influences grain yield in wheat. We report the map-based cloning of a gene determining the number of spikelet nodes per spike in common wheat. The cloned gene is named TaCOL-B5 and encodes a CONSTANS-like protein that is orthologous to COL5 in plant species. Constitutive overexpression of the dominant TaCol-B5 allele but without the region encoding B-boxes in a common wheat cultivar increases the number of spikelet nodes per spike and produces more tillers and spikes, thereby enhancing grain yield in transgenic plants under field conditions. Allelic variation in TaCOL-B5 results in amino acid substitutions leading to differential protein phosphorylation by the protein kinase TaK4. The TaCol-B5 allele is present in emmer wheat but is rare in a global collection of modern wheat cultivars.


Assuntos
Grão Comestível , Triticum , Alelos , Clonagem Molecular , Grão Comestível/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Triticum/genética
2.
Nat Commun ; 12(1): 2303, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863881

RESUMO

Vernalization genes underlying dramatic differences in flowering time between spring wheat and winter wheat have been studied extensively, but little is known about genes that regulate subtler differences in flowering time among winter wheat cultivars, which account for approximately 75% of wheat grown worldwide. Here, we identify a gene encoding an O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) that differentiates heading date between winter wheat cultivars Duster and Billings. We clone this TaOGT1 gene from a quantitative trait locus (QTL) for heading date in a mapping population derived from these two bread wheat cultivars and analyzed in various environments. Transgenic complementation analysis shows that constitutive overexpression of TaOGT1b from Billings accelerates the heading of transgenic Duster plants. TaOGT1 is able to transfer an O-GlcNAc group to wheat protein TaGRP2. Our findings establish important roles for TaOGT1 in winter wheat in adaptation to global warming in the future climate scenarios.


Assuntos
Aclimatação/fisiologia , Flores/crescimento & desenvolvimento , N-Acetilglucosaminiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Triticum/fisiologia , N-Acetilglucosaminiltransferases/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Locos de Características Quantitativas/genética , Estações do Ano
3.
Theor Appl Genet ; 133(7): 2183-2195, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32281004

RESUMO

KEY MESSAGE: Heterogeneous Lr34 genes for leaf rust in winter wheat cultivar 'Duster' and KASP markers for allelic variation in exon 11 and exon 22 of Lr34. Wheat, Triticum aestivum (2n = 6x = 42, AABBDD), is a hexaploid species, and each of three homoeologous genomes A, B, and D should have one copy for a gene in its ancestral form if the gene has no duplication. Previously reported leaf rust resistance gene Lr34 has one copy on the short arm of chromosome 7D in hexaploid wheat, and allelic variation in Lr34 is in intron 4, exon 11, exon 12, or exon 22. In this study, we discovered that Oklahoma hard red winter wheat cultivar 'Duster' (PI 644,016) has two copies of the Lr34 gene, the resistance allele Lr34a and the susceptibility allele Lr34b. Both Lr34a and Lr34b were mapped in the same linkage group on chromosome 7D in a doubled-haploid population generated from a cross between Duster and a winter wheat cultivar 'Billings' which carries the susceptibility allele Lr34c. A chromosomal fragment including Lr34 and at least two neighboring genes on its proximal side but excluding genes on its distal side was duplicated in Duster. The Duster Lr34ab allele was associated with tip necrosis and increased resistance against leaf rust at adult plants in the Duster × Billings DH population tested in the field, demonstrating the function of the Duster Lr34ab allele in wheat. We have developed KASP markers for allelic variation in exon 11 and exon 22 of Lr34 in wheat. These markers can be utilized to accelerate the selection of Lr34 in wheat.


Assuntos
Alelos , Basidiomycota/patogenicidade , Doenças das Plantas/genética , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Cruzamentos Genéticos , Resistência à Doença/genética , Éxons , Genes de Plantas , Ligação Genética , Variação Genética , Genótipo , Haploidia , Íntrons , Necrose , Fenótipo , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Reação em Cadeia da Polimerase , Locos de Características Quantitativas
4.
Plant Genome ; 12(3): 1-15, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-33016592

RESUMO

CORE IDEAS: Prediction performance for winter wheat grain yield and end-use quality traits. Prediction accuracies evaluated by cross-validations are significantly overestimated. Nonparametric algorithms outperform the parametric alternatives in cross-year predictions. Strategically designing training population improves response to selection. Response to selection varies across growing seasons and environments. Considering the practicality of applying genomic selection (GS) in the line development stage of a hard red winter (HRW) wheat (Triticum aestivum L.) variety development program (VDP), the effectiveness of GS was evaluated by prediction accuracy and by the response to selection across field seasons that demonstrated challenges for crop improvement under significant climate variability. Important breeding targets for wheat improvement in the southern Great Plains of the United States, including grain yield, kernel weight, wheat protein content, and sodium dodecyl sulfate (SDS) sedimentation volume as a rapid test for predicting bread-making quality, were used to estimate the effectiveness of GS across harvest years from 2014 (drought) to 2016 (normal). In general, nonparametric algorithms reproducing kernel Hilbert space (RKHS) and random forest (RF) produced higher accuracies in both same-year cross-validations (CVs) and cross-year predictions for the purpose of line selection. Further, the stability of GS performance was greatest for SDS sedimentation volume but least for wheat protein content. To ensure long-term genetic gain, our study on selection response suggested that across this sample of environmental variability, and though there are cases where phenotypic selection (PS) might be still preferred, training conducted under drought or in suboptimal conditions could provide an encouraging prediction outcome when selection decisions were made in normal conditions. However, it is not advisable to use training information collected from a normal season to predict trait performance under drought conditions. Finally, the superiority of response to selection was most evident if the training population (TP) can be optimized.


Assuntos
Melhoramento Vegetal , Triticum/genética , Genoma de Planta , Genômica , Estações do Ano , Seleção Genética
5.
Plant Biotechnol J ; 16(6): 1214-1226, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29193541

RESUMO

Wheat (Triticum aestivum) has low nitrogen use efficiency (NUE). The genetic mechanisms controlling NUE are unknown. Positional cloning of a major quantitative trait locus for N-related agronomic traits showed that the vernalization gene TaVRN-A1 was tightly linked with TaNUE1, the gene shown to influence NUE in wheat. Because of an Ala180 /Val180 substitution, TaVRN-A1a and TaVRN-A1b proteins interact differentially with TaANR1, a protein encoded by a wheat orthologue of Arabidopsis nitrate regulated 1 (ANR1). The transcripts of both TaVRN-A1 and TaANR1 were down-regulated by nitrogen. TaANR1 was functionally characterized in TaANR1::RNAi transgenic wheat, and in a natural mutant with a 23-bp deletion including 10-bp at the 5' end of intron 5 and 13-bp of exon 6 in gDNA sequence in its gDNA sequence, which produced transcript that lacked the full 84-bp exon 6. Both TaANR1 and TaHOX1 bound to the Ala180 /Val180 position of TaVRN-A1. Genetically incorporating favourable alleles from TaVRN-A1, TaANR1 and TaHOX1 increased grain yield from 9.84% to 11.58% in the field. Molecular markers for allelic variation of the genes that regulate nitrogen can be used in breeding programmes aimed at improving NUE and yield in novel wheat cultivars.


Assuntos
Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Triticum/metabolismo , Sequência de Bases , Genes de Plantas , Mutação , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Triticum/genética , Triticum/crescimento & desenvolvimento
6.
Plant Biotechnol J ; 16(1): 186-196, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28509374

RESUMO

Molecular genetic analyses revealed that the WUSCHEL-related homeobox (WOX) gene superfamily regulates several programs in plant development. Many different mechanisms are reported to underlie these alterations. The WOX family member STENOFOLIA (STF) is involved in leaf expansion in the eudicot Medicago truncutula. Here, we report that when this gene was ectopically expressed in a locally adapted hard red winter wheat cultivar (Triticum aestivum), the transgenic plants showed not only widened leaves but also accelerated flowering and increased chlorophyll content. These desirable traits were stably inherited in the progeny plants. STF binds to wheat genes that have the (GA)n /(CT)n DNA cis element, regardless of sequences flanking the DNA repeats, suggesting a mechanism for its pleiotropic effects. However, the amino acids between position 91 and 262 in the STF protein that were found to bind with the (GA)n motif have no conserved domain with any other GAGA-binding proteins in animals or plants. We also found that STF interacted with a variety of proteins in wheat in yeast 2 hybrid assays. We conclude that the eudicot STF gene binds to (GA)n /(CT)n DNA elements and can be used to regulate leaf width, flowering time and chlorophyll content in monocot wheat.


Assuntos
Medicago truncatula/metabolismo , Folhas de Planta/metabolismo , Triticum/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Medicago truncatula/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Triticum/genética
7.
BMC Genomics ; 18(1): 838, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089022

RESUMO

BACKGROUND: 'Apogee' has a very short life cycle among wheat cultivars (flowering 25 days after planting under a long day and without vernalization), and it is a unique genetic material that can be used to accelerate cycling breeding lines. However, little is known about the genetic basis of the super-short life of Apogee wheat. RESULTS: In this study, Apogee was crossed with a strong winter wheat cultivar 'Overland', and 858 F2 plants were generated and tested in a greenhouse under constant warm temperature and long days. Apogee wheat was found to have the early alleles for four flowering time genes, which were ranked in the order of vrn-A1 > VRN-B1 > vrn-D3 > PPD-D1 according to their effect intensity. All these Apogee alleles for early flowering showed complete or partial dominance effects in the F2 population. Surprisingly, Apogee was found to have the same alleles at vrn-A1a and vrn-D3a for early flowering as observed in winter wheat cultivar 'Jagger.' It was also found that the vrn-A1a gene was epistatic to VRN-B1 and vrn-D3. The dominant vrn-D3a alone was not sufficient to cause the transition from vegetative to reproductive development in winter plants without vernalization but was able to accelerate flowering in those plants that carry the vrn-A1a or Vrn-B1 alleles. The genetic effects of the vernalization and photoperiod genes were validated in Apogee x Overland F3 populations. CONCLUSION: VRN-A1, VRN-B1, VRN-D3, and PPD-D1 are the major genes that enabled Apogee to produce the very short life cycle. This study greatly advanced the molecular understanding of the multiple flowering genes under different genetic backgrounds and provided useful molecular tools that can be used to accelerate winter wheat breeding schemes.


Assuntos
Genes de Plantas , Estudos de Associação Genética , Triticum/crescimento & desenvolvimento , Triticum/genética , Alelos , Flores/genética , Regulação da Expressão Gênica de Plantas , Variação Genética , Genética Populacional , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes
8.
Mol Breed ; 37(10): 117, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28936114

RESUMO

Crop improvement is a long-term, expensive institutional endeavor. Genomic selection (GS), which uses single nucleotide polymorphism (SNP) information to estimate genomic breeding values, has proven efficient to increasing genetic gain by accelerating the breeding process in animal breeding programs. As for crop improvement, with few exceptions, GS applicability remains in the evaluation of algorithm performance. In this study, we examined factors related to GS applicability in line development stage for grain yield using a hard red winter wheat (Triticum aestivum L.) doubled-haploid population. The performance of GS was evaluated in two consecutive years to predict grain yield. In general, the semi-parametric reproducing kernel Hilbert space prediction algorithm outperformed parametric genomic best linear unbiased prediction. For both parametric and semi-parametric algorithms, an upward bias in predictability was apparent in within-year cross-validation, suggesting the prerequisite of cross-year validation for a more reliable prediction. Adjusting the training population's phenotype for genotype by environment effect had a positive impact on GS model's predictive ability. Possibly due to marker redundancy, a selected subset of SNPs at an absolute pairwise correlation coefficient threshold value of 0.4 produced comparable results and reduced the computational burden of considering the full SNP set. Finally, in the context of an ongoing breeding and selection effort, the present study has provided a measure of confidence based on the deviation of line selection from GS results, supporting the implementation of GS in wheat variety development.

9.
Theor Appl Genet ; 129(2): 345-55, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26602233

RESUMO

KEY MESSAGE: The wheat ortholog of the rice gene OsXA21 against bacterial leaf blight showed resistance to multiple pests in bread wheat but different interacting proteins. ABSTRACT: A quantitative trait locus QYr.osu-5A on the long arm of chromosome 5A in bread wheat (Triticum aestivum L., 2n = 6x = 42; AABBDD) was previously reported to confer consistent resistance in adult plants to predominant stripe rust races, but the gene causing the quantitative trait locus (QTL) is not known. Single-nucleotide polymorphism (SNP) markers were used to saturate the QTL region. Comparative and syntenic regions between wheat and rice (Oryza sativa) were applied to identify candidate genes for QYr.osu-5A. TaXA21-A1, which is referred to as a wheat ortholog of OsXA21-like gene on chromosome 9 in rice, was mapped under the peak of the QYr.osu-5A. TaXA21-A1 not only explained the phenotypic variation in reaction to different stripe rust races but also showed significant effects on resistance to powdery mildew and Hessian fly biotype BP. The natural allelic variation resulted in the alternations of four amino acids in deduced TaXA21-A1 proteins. The interacting proteins of TaXA21-A1 were different from those identified by OsXA21 on rice chromosome 11 against bacterial leaf blight. TaXA21-A1 confers unique resistance against multiple pests in wheat but might not have common protein interactors or thus overlapping functions with OsXA21 in rice. XA21 function has diverged during evolution of cereal crops. The molecular marker developed for TaXA21-A1 would accelerate its application of the candidate gene at the QYr.osu-5A locus in wheat breeding programs.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Sequência de Aminoácidos , Animais , Bactérias , Basidiomycota , Passeio de Cromossomo , Cromossomos de Plantas , Produtos Agrícolas/genética , Dípteros , Genes de Plantas , Marcadores Genéticos , Variação Genética , Dados de Sequência Molecular , Oryza/genética , Polimorfismo de Nucleotídeo Único , Homologia de Sequência de Aminoácidos
10.
G3 (Bethesda) ; 3(11): 1945-53, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24048643

RESUMO

Introgression of novel genetic variation into breeding populations is frequently required to facilitate response to new abiotic or biotic pressure. This is particularly true for the introduction of host pathogen resistance in plant breeding. However, the number and genomic location of loci contributed by donor parents are often unknown, complicating efforts to recover desired agronomic phenotypes. We examined allele frequency differentiation in an experimental barley breeding population subject to introgression and subsequent selection for Fusarium head blight resistance. Allele frequency differentiation between the experimental population and the base population identified three primary genomic regions putatively subject to selection for resistance. All three genomic regions have been previously identified by quantitative trait locus (QTL) and association mapping. Based on the degree of identity-by-state relative to donor parents, putative donors of resistance alleles were also identified. The successful application of comparative population genetic approaches in this barley breeding experiment suggests that the approach could be applied to other breeding populations that have undergone defined breeding and selection histories, with the potential to provide valuable information for genetic improvement.


Assuntos
Resistência à Doença/genética , Genoma de Planta , Hordeum/genética , Alelos , Fusariose/genética , Fusariose/metabolismo , Fusariose/microbiologia , Fusarium/genética , Frequência do Gene , Genótipo , Hordeum/microbiologia , Desequilíbrio de Ligação , Fenótipo , Doenças das Plantas/genética , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA