Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 28(1): 974-981, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32829431

RESUMO

Diethyl phthalate (DEP) is a pollutant which can be found on soils as a result of its widespread application in plastic industry. Soil contaminated with DEP requires the application of different chemical methods to attain its remediation. Among these methods, ozonation has proven to be effective against toxic soil pollutants. The presence of metal oxides in soil is a possible source of catalytic effect. In this study, it was analyzed the catalytic effect of goethite (α-FeOOH), hematite (α-Fe2O3), and gibbsite (γ-Al(OH)3) in combination with O3 to achieve DEP decomposition. The DEP elimination efficiency by ozonation on the sand increased according to the following order: without catalyst < γ-Al(OH)3 < α-Fe2O3 < α-FeOOH. Among these three oxides, goethite has the highest OH groups density. The reaction of OH groups and O3 favors the formation of oxidant species, such as O2•- and OH•. The effect of the moisture content, the catalyst concentration, and the type of soil (sand and calcined soil) were also studied. The latter had a significant influence on the total organic carbon (TOC) removal. The mineralization degree was 84% in the O3-soil system, while only 40% was obtained with O3-sand (α-FeOOH) in dry sand after 8 h of treatment. Calcined soil promoted the increase of TOC removal due to the presence of different metal oxides, which were active centers for O3 decomposition. The toxicity tests of the three reaction systems (O3-sand, O3-sand (α-FeOOH), and O3-soil) were evaluated on lettuce seed germination before and after DEP ozonation.


Assuntos
Ozônio , Poluentes Químicos da Água , Catálise , Compostos de Ferro , Minerais , Ácidos Ftálicos , Areia , Solo , Poluentes Químicos da Água/análise
2.
Environ Sci Pollut Res Int ; 27(18): 22184-22194, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32034590

RESUMO

The carbamazepine (CBZ) abatement is herein evaluated using catalytic ozonation at different NiO concentrations as catalyst: 100, 300, and 500 mg L-1, revealing its total destruction after 5 min of reaction either by conventional or catalytic ozonation. The NiO incorporation in the reactor does not increase the destruction rate, but the catalyst presence enhances the partial mineralization of the contaminant by conversion into oxalic and formic acids and the removal of total organic carbon (TOC) associated with the formation of oxidant species such as hydroxyl radical. Evidence for this behavior is the accumulation rate of the above acids which rise proportionally to the NiO concentration. The highest NiO concentration (500 mg L-1) reached a maximum TOC removal of 79.2%, which exceeds by 50% the outcome of the conventional treatment. The accumulation-decomposition profiles of oxalic and formic acids suggest the occurrence of simultaneous reaction mechanisms (hydroxyl radicals and complex formations) on the catalyst during CBZ ozonation. According to XPS analysis, the presence of nitrogen species in the NiO-ozonated was attributable to byproducts of CBZ decomposition. The toxicity bioassay based on Lactuca sativa seeds demonstrate that ozonated samples attained similar plant germination than the reference substance (water) after 120 min of treatment. This result is comparable with or without the catalyst presence, indicating the formation of non-toxic accumulated byproducts at the end of the ozonation reaction.


Assuntos
Ozônio , Poluentes Químicos da Água/análise , Purificação da Água , Carbamazepina , Catálise
3.
RSC Adv ; 9(26): 14822-14833, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35516308

RESUMO

This work evaluated the inhibition effect of low molecular weight alcohol (ethanol) on naproxen (NAP) degradation by conventional and catalytic ozonation. The reaction system considered the ethanol as complementary organic matter in water. The conventional ozonation and in the presence of nickel oxide (O3-NiO) achieved 98% NAP degradation during the first 15 min of reaction despite the presence of ethanol. However, NAP degradation presented a delaying effect during the first minutes of treatment with this alcohol. The latter phenomenon indicates that ethanol concentration played a meaningful role in ozonation effectiveness in comparison with the presence of NiO catalyst. The presence of NiO did not generate differences in the byproducts in comparison with conventional ozonation. The intermediates were detected using the Electrospray Ionization Mass Spectrometry technique and have only one aromatic ring in their chemical structure. In samples without ethanol, these byproducts appeared only in the first 5 min of reaction. The TOC study demonstrated the increment of 25% in the mineralization degree with the presence of NiO due to the formation of ·OH species.

4.
Artigo em Inglês | MEDLINE | ID: mdl-24117080

RESUMO

This research investigated the ozonation of Basic Green 4 (BG4) under the presence of acetic acid (AA). This acid is used as a textile additive for many industrial dyes derived from triphenylmethane. Determining the effect of this additive on discoloration, degradation dynamics, and final by-product distribution is the main objective of this study. The reaction system was the ozonation of a dye solution in co-solvents. This solution (dye and AA) was considered a simplified version of real BG4 dyeing wastewaters supplied with additives. The dye concentration was set to 50, 150, and 250 mg/L without pH adjustment (pH = 3). This low value was forced by the AA. Ozonation reaction with dye was mainly done by a direct molecular mechanism. The discoloration dynamics of BG4 without and with the additive were determined by ultraviolet and visible wavelength spectroscopy. The dye decomposition and the intermediate and final product formation-decomposition dynamics were followed by high-performance liquid chromatography. The effects of AA in the ozonation results were significant in the following ways: 1) a possible complex, formed between AA and the dye, changed ozone consumption; 2) the presence of additive decelerated the dye discoloration and decomposition; and 3) the number of by-products was dissimilar in both systems, with and without the additive the ozonation. The accumulation of organic acids with low molecular weight was determined in both systems, with and without the additive. Only one by-product was obtained in ozonation when AA participated in the reactor. A possible reaction mechanism is proposed for the system dye-AA-ozone.


Assuntos
Ácido Acético/química , Corantes/química , Ozônio/química , Corantes de Rosanilina/química
5.
J Hazard Mater ; 262: 472-81, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24076483

RESUMO

2,4-Dichlorophenoxyacetic acid (2,4-D) is usually used as a refractory model compound that requires a prolonged reaction time for mineralization. In this study, we found that nickel oxide (NiO) significantly improved 2,4-D degradation and mineralization in reaction with ozone. Other metal oxides, such as titania, silica and alumina, were also tested in this reaction, so that, the mineralization degree was almost the same for all of them (ca. 25%), whereas NiO showed more than 60% in 1h. These outstanding results led us to study in more depth the role of NiO as catalyst in the degradation of 2,4-D. For instance, the optimum NiO loading amount was 0.3 g L(-1). The catalytic ozonation showed a high stability after three reaction cycles. With the aim of identifying the surface species responsible for the high activity of NiO, besides knowing the byproducts during the degradation of 2,4-D, XPS and HPLC were mainly used as analytical tools. According to the results, the mineralization of 2,4-D was directly influenced by the adsorbed chlorate organic compounds and oxalate group onto NiO. Therefore, NiO plays a true role as a catalyst forming surface compounds which are subsequently decomposed causing an increase in the mineralization efficiency. In addition, it was possible to identify several degradation byproducts (2,4-diclorophenol, glycolic, fumaric, maleic and oxalic acids) that were included in a rational reaction pathway. It was proposed that 2,4-D elimination in presence of NiO as catalyst is a combination of processes such as: conventional ozonation, indirect mechanism (OH) and surface complex formation.


Assuntos
Ácido 2,4-Diclorofenoxiacético/química , Herbicidas/química , Níquel/química , Oxidantes/química , Ozônio/química , Poluentes Químicos da Água/química , Catálise , Espectroscopia Fotoeletrônica , Purificação da Água/métodos
6.
J Environ Manage ; 113: 545-51, 2012 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22494822

RESUMO

Anthracene decomposition in solid phase by conventional ozonation was investigated employing model and real soil samples. Reaction in a two-phase system (soil-ozone) and a three-phase system (soil-water-ozone) was studied. The total anthracene decomposition in the two studied systems (sand-ozone and burned soil-ozone) was obtained at 15 and 30 min of treatment by ozone, respectively, and the efficiency of ozonation was depended on the water content in treated soil samples. The anthracene degradation in an agricultural soil (free water) was carried up slower (only 30% after 90 min of ozonation), because the real solid samples content organic matter that provokes the additionally ozone consuming. The pre-ozonation of free anthracene agricultural soil depicts the content of the organic matter fraction, which have the ozone reactivity orders as aromatic>aliphatic>polar. In all cases, the ozonation by-products were identified partiality; the majority of by-products formatted react with ozone. Actually some of them were decomposed totally, while others were accumulated. Some products identified in all systems such as anthrone, 9,10-anthraquinone and phthalic acid, are less toxic than the anthracene.


Assuntos
Antracenos/química , Ozônio/química , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA