Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(11): e0187735, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29140992

RESUMO

The porcine reproductive and respiratory syndrome (PRRS) is an infectious disease that leads to high financial and production losses in the global swine industry. The pathogenesis of this disease is dependent on a multitude of factors, and its control remains problematic. The immune system generally defends against infectious diseases, especially dendritic cells (DCs), which play a crucial role in the activation of the immune response after viral infections. However, the understanding of the immune response and the genetic impact on the immune response to PRRS virus (PRRSV) remains incomplete. In light of this, we investigated the regulation of the host immune response to PRRSV in porcine lung DCs using RNA-sequencing (RNA-Seq). Lung DCs from two different pig breeds (Pietrain and Duroc) were collected before (0 hours) and during various periods of infection (3, 6, 9, 12, and 24 hours post infection (hpi)). RNA-Seq analysis revealed a total of 20,396 predicted porcine genes, which included breed-specific differentially expressed immune genes. Pietrain and Duroc infected lung DCs showed opposite gene expression courses during the first time points post infection. Duroc lung DCs reacted more strongly and distinctly than Pietrain lung DCs during these periods (3, 6, 9, 12 hpi). Additionally, cluster analysis revealed time-dependent co-expressed groups of genes that were involved in immune-relevant pathways. Key clusters and pathways were identified, which help to explain the biological and functional background of lung DCs post PRRSV infection and suggest IL-1ß1 as an important candidate gene. RNA-Seq was also used to characterize the viral replication of PRRSV for each breed. PRRSV was able to infect and to replicate differently in lung DCs between the two mentioned breeds. These results could be useful in investigations on immunity traits in pig breeding and enhancing the health of pigs.


Assuntos
Células Dendríticas/metabolismo , Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Transcriptoma , Animais , Células Dendríticas/patologia , Feminino , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Família Multigênica , Síndrome Respiratória e Reprodutiva Suína/patologia , Suínos
2.
PLoS One ; 12(3): e0171828, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28278192

RESUMO

The porcine reproductive and respiratory syndrome (PRRS) is a devastating viral disease affecting swine production, health and welfare throughout the world. A synergistic action of the innate and the adaptive immune system of the host is essential for mounting a durable protective immunity through vaccination. Therefore, the current study aimed to investigate the transcriptome profiles of peripheral blood mononuclear cells (PBMCs) to characterize the innate and the adaptive immune response to PRRS Virus (PRRSV) vaccination in Pietrain pigs. The Affymetrix gene chip porcine gene 1.0 ST array was used for the transcriptome profiling of PBMCs collected at immediately before (D0), at one (D1) and 28 days (D28) post PRRSV vaccination with three biological replications. With FDR <0.05 and log2 fold change ±1.5 as cutoff criteria, 295 and 115 transcripts were found to be differentially expressed in PBMCs during the stage of innate and adaptive response, respectively. The microarray expression results were technically validated by qRT-PCR. The gene ontology terms such as viral life cycle, regulation of lymphocyte activation, cytokine activity and inflammatory response were enriched during the innate immunity; cytolysis, T cell mediated cytotoxicity, immunoglobulin production were enriched during adaptive immunity to PRRSV vaccination. Significant enrichment of cytokine-cytokine receptor interaction, signaling by interleukins, signaling by the B cell receptor (BCR), viral mRNA translation, IFN-gamma pathway and AP-1 transcription factor network pathways were indicating the involvement of altered genes in the antiviral defense. Network analysis revealed that four network modules were functionally involved with the transcriptional network of innate immunity, and five modules were linked to adaptive immunity in PBMCs. The innate immune transcriptional network was found to be regulated by LCK, STAT3, ATP5B, UBB and RSP17. While TGFß1, IL7R, RAD21, SP1 and GZMB are likely to be predictive for the adaptive immune transcriptional response to PRRSV vaccine in PBMCs. Results of the current immunogenomics study advances our understanding of PRRS in term of host-vaccine interaction, and thereby contribute to design a rationale for disease control strategy.


Assuntos
Imunidade Adaptativa/imunologia , Imunidade Celular/imunologia , Leucócitos Mononucleares/imunologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Suínos/imunologia , Vacinas Virais/uso terapêutico , Animais , Animais Recém-Nascidos , Anticorpos Antivirais/sangue , Citocinas/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Viral da Expressão Gênica , Leucócitos Mononucleares/metabolismo , Ativação Linfocitária , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/virologia , Suínos/genética , Suínos/virologia , Linfócitos T/imunologia , Transcriptoma , Vacinação
3.
BMC Genomics ; 17(1): 641, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27528396

RESUMO

BACKGROUND: Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important viral diseases affecting swine industry worldwide. Despite routine farm vaccination, effective control strategies for PRRS remained elusive which underscores the need for in-depth studies to gain insight into the host immune response to vaccines. The current study aimed to investigate transcriptional responses to PRRS Virus (PRRSV) vaccine in the peripheral blood mononuclear cells (PBMCs) within 3 days following vaccination in German Landrace pigs. RESULTS: Transcriptome profiling of PBMCs from PRRSV vaccinated and age-matched unvaccinated pigs at right before (0 h), and at 6, 24 and 72 h after PRRSV vaccination was performed using the Affymetrix gene chip porcine gene 1.0 st array. Comparison of PBMCs transcriptome profiles between vaccinated and unvaccinated pigs revealed a distinct host innate immune transcriptional response to PRRSV vaccine. There was a significant temporal variation in transcriptional responses of PRRSV vaccine in PBMCs accounting 542, 2,263 and 357 differentially expressed genes (DEGs) at 6, 24 and 72 h post vaccination, respectively compared to the time point before vaccination (controls). Gene ontology analysis revealed the involvement of these DEGs in various biological process including innate immune response, signal transduction, positive regulation of MAP kinase activity, TRIF-dependent toll-like receptor signaling pathway, T cell differentiation and apoptosis. Immune response specific pathways such as cytokine-cytokine receptor interaction, chemokine signaling pathway, signal transduction, JAK-STAT pathway and regulation, TRAF6 mediated induction of NF-kB and MAPK, the NLRP3 inflammasome, endocytosis and interferon signaling were under regulation during the early stage of PRRSV vaccination. Network enrichment analysis revealed APP, TRAF6, PIN1, FOS, CTNNB1, TNFAIP3, TIP1, CDKN1, SIRT1, ESR1 and HDAC5 as the highly interconnected hubs of the functional network of PRRSV vaccine induced transcriptome changes in PBMCs. CONCLUSIONS: This study showed that a massive gene expression change occurred in PBMCs following PRRSV vaccination in German Landrace pigs. Within first 3 days of vaccine exposure, the highest transcript abundance was observed at 24 h after vaccination compared to that of control. Results of this study suggest that APP, TRAF6, PIN1, FOS, CDKN1A and TNFAIP3 could be considered as potential candidate genes for PRRSV vaccine responsiveness.


Assuntos
Leucócitos Mononucleares/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Transcriptoma , Vacinas Virais/imunologia , Animais , Anticorpos/sangue , Ensaio de Imunoadsorção Enzimática , Redes Reguladoras de Genes , Imunidade Inata , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , RNA/isolamento & purificação , RNA/metabolismo , Suínos , Fatores de Tempo , Vacinação/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA