Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes Dis ; 10(1): 267-283, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37013054

RESUMO

Market drugs, such as Food and Drug Administration (FDA) or European Medicines Agency (EMA)-approved drugs for specific indications provide opportunities for repurposing for newer therapeutics. This potentially saves resources invested in clinical trials that verify drug safety and tolerance in humans prior to alternative indication approval. Protein arginine methyltransferase 5 (PRMT5) overexpression has been linked to promoting the tumor phenotype in several cancers, including pancreatic ductal adenocarcinoma (PDAC), colorectal cancer (CRC), and breast cancer (BC), making PRMT5 an important target for cancer therapy. Previously, we showed that PRMT5-mediated methylation of the nuclear factor (NF)-κB, partially contributes to its constitutive activation observed in cancers. In this study, we utilized an AlphaLISA-based high-throughput screening method adapted in our lab, and identified one FDA-approved drug, Candesartan cilexetil (Can, used in hypertension treatment) and one EMA-approved drug, Cloperastine hydrochloride (Clo, used in cough treatment) that had significant PRMT5-inhibitory activity, and their anti-tumor properties were validated using cancer phenotypic assays in vitro. Furthermore, PRMT5 selective inhibition of methyltransferase activity was confirmed by reduction of both NF-κB methylation and its subsequent activation upon drug treatment. Using in silico prediction, we identified critical residues on PRMT5 targeted by these drugs that may interfere with its enzymatic activity. Finally, Clo and Can treatment have exhibited marked reduction in tumor growth in vivo. Overall, we provide basis for pursuing repurposing Clo and Can as anti-PRMT5 cancer therapies. Our study offers potential safe and fast repurposing of previously unknown PRMT5 inhibitors into clinical practice.

2.
Sci Rep ; 13(1): 1747, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720900

RESUMO

Ocular neovascular diseases including neovascular age-related macular degeneration (nvAMD) are widespread causes of blindness. Patients' non-responsiveness to currently used biologics that target vascular endothelial growth factor (VEGF) poses an unmet need for novel therapies. Here, we identify protein arginine methyltransferase 5 (PRMT5) as a novel therapeutic target for nvAMD. PRMT5 is a well-known epigenetic enzyme. We previously showed that PRMT5 methylates and activates a proangiogenic and proinflammatory transcription factor, the nuclear factor kappa B (NF-κB), which has a master role in tumor progression, notably in pancreatic ductal adenocarcinoma and colorectal cancer. We identified a potent and specific small molecule inhibitor of PRMT5, PR5-LL-CM01, that dampens the methylation and activation of NF-κB. Here for the first time, we assessed the antiangiogenic activity of PR5-LL-CM01 in ocular cells. Immunostaining of human nvAMD sections revealed that PRMT5 is highly expressed in the retinal pigment epithelium (RPE)/choroid where neovascularization occurs, while mouse eyes with laser induced choroidal neovascularization (L-CNV) showed PRMT5 is overexpressed in the retinal ganglion cell layer and in the RPE/choroid. Importantly, inhibition of PRMT5 by PR5-LL-CM01 or shRNA knockdown of PRMT5 in human retinal endothelial cells (HRECs) and induced pluripotent stem cell (iPSC)-derived choroidal endothelial cells (iCEC2) reduced NF-κB activity and the expression of its target genes, such as tumor necrosis factor α (TNF-α) and VEGF-A. In addition to inhibiting angiogenic properties of proliferation and tube formation, PR5-LL-CM01 blocked cell cycle progression at G1/S-phase in a dose-dependent manner in these cells. Thus, we provide the first evidence that inhibition of PRMT5 impedes angiogenesis in ocular endothelial cells, suggesting PRMT5 as a potential therapeutic target to ameliorate ocular neovascularization.


Assuntos
Neovascularização de Coroide , Neoplasias Pancreáticas , Animais , Camundongos , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Células Endoteliais , NF-kappa B , Neovascularização de Coroide/genética , Retina , Proteína-Arginina N-Metiltransferases/genética
4.
Int J Mol Sci ; 21(10)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456215

RESUMO

The overexpression of PRMT5 is highly correlated to poor clinical outcomes for colorectal cancer (CRC) patients. Importantly, our previous work demonstrated that PRMT5 overexpression could substantially augment activation of the nuclear factor kappa B (NF-κB) via methylation of arginine 30 (R30) on its p65 subunit, while knockdown of PRMT5 showed the opposite effect. However, the precise mechanisms governing this PRMT5/NF-κB axis are still largely unknown. Here, we report a novel finding that PRMT5 is phosphorylated on serine 15 (S15) in response to interleukin-1ß (IL-1ß) stimulation. Interestingly, we identified for the first time that the oncogenic kinase, PKCι could catalyze this phosphorylation event. Overexpression of the serine-to-alanine mutant of PRMT5 (S15A), in either HEK293 cells or CRC cells HT29, DLD1, and HCT116 attenuated NF-κB transactivation compared to WT-PRMT5, confirming that S15 phosphorylation is critical for the activation of NF-κB by PRMT5. Furthermore, the S15A mutant when compared to WT-PRMT5, could downregulate a subset of IL-1ß-inducible NF-κB-target genes which correlated with attenuated promoter occupancy of p65 at its target genes. Additionally, the S15A mutant reduced IL-1ß-induced methyltransferase activity of PRMT5 and disrupted the interaction of PRMT5 with p65. Furthermore, our data indicate that blockade of PKCι-regulated PRMT5-mediated activation of NF-κB was likely through phosphorylation of PRMT5 at S15. Finally, inhibition of PKCι or overexpression of the S15A mutant attenuated the growth, migratory, and colony-forming abilities of CRC cells compared to the WT-PRMT5. Collectively, we have identified a novel PKCι/PRMT5/NF-κB signaling axis, suggesting that pharmacological disruption of this pivotal axis could serve as the basis for new anti-cancer therapeutics.


Assuntos
Neoplasias Colorretais/metabolismo , NF-kappa B/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Transdução de Sinais , Substituição de Aminoácidos , Proliferação de Células , Células HCT116 , Células HEK293 , Células HT29 , Humanos , Fosforilação , Proteína Quinase C/metabolismo , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/genética , Serina/genética , Serina/metabolismo
5.
Mol Biosyst ; 13(12): 2509-2520, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29099132

RESUMO

The protein arginine methyltransferase (PRMT) family of enzymes comprises nine family members in mammals. They catalyze arginine methylation, either monomethylation or symmetric/asymmetric dimethylation of histone and non-histone proteins. PRMT methylation of its substrate proteins modulates cellular processes such as signal transduction, transcription, and mRNA splicing. Recent studies have linked overexpression of PRMT5, a member of the PRMT superfamily, to oncogenesis, making it a potential target for cancer therapy. In this study, we developed a highly sensitive (Z' score = 0.7) robotic high throughput screening (HTS) platform to discover small molecule inhibitors of PRMT5 by adapting the AlphaLISA™ technology. Using biotinylated histone H4 as a substrate, and S-adenosyl-l-methionine as a methyl donor, PRMT5 symmetrically dimethylated H4 at arginine (R) 3. Highly specific acceptor beads for symmetrically dimethylated H4R3 and streptavidin-coated donor beads bound the substrate, emitting a signal that is proportional to the methyltransferase activity. Using this powerful approach, we identified specific PRMT5 inhibitors P1608K04 and P1618J22, and further validated their efficacy and specificity for inhibiting PRMT5. Importantly, these two compounds exhibited much more potent efficacy than the commercial PRMT5 inhibitor EPZ015666 in both pancreatic and colorectal cancer cells. Overall, our work highlights a novel, powerful, and sensitive approach to identify specific PRMT5 inhibitors. The general principle of this HTS screening method can not only be applied to PRMT5 and the PRMT superfamily, but may also be extended to other epigenetic targets. This approach allows us to identify compounds that inhibit the activity of their respective targets, and screening hits like P1608K04 and P1618J22 may serve as the basis for novel drug development to treat cancer and/or other diseases.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Humanos , Reação em Cadeia da Polimerase , S-Adenosilmetionina/metabolismo , Estreptavidina/farmacologia
6.
Oncotarget ; 8(25): 39963-39977, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28591716

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) and colorectal cancer (CRC) are notoriously challenging for treatment. Hyperactive nuclear factor κB (NF-κB) is a common culprit in both cancers. Previously, we discovered that protein arginine methyltransferase 5 (PRMT5) methylated and activated NF-κB. Here, we show that PRMT5 is highly expressed in PDAC and CRC. Overexpression of PRMT5 promoted cancer progression, while shRNA knockdown showed an opposite effect. Using an innovative AlphaLISA high throughput screen, we discovered a lead compound, PR5-LL-CM01, which exhibited robust tumor inhibition effects in both cancers. An in silico structure prediction suggested that PR5-LL-CM01 inhibits PRMT5 by binding with its active pocket. Importantly, PR5-LL-CM01 showed higher anti-tumor efficacy than the commercial PRMT5 inhibitor, EPZ015666, in both PDAC and CRC. This study clearly highlights the significant potential of PRMT5 as a therapeutic target in PDAC and CRC, and establishes PR5-LL-CM01 as a promising basis for new drug development in the future.


Assuntos
Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Aminas/química , Aminas/farmacologia , Animais , Carcinoma Ductal Pancreático/enzimologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/patologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Inibidores Enzimáticos/química , Células HCT116 , Células HT29 , Humanos , Hidrocarbonetos Aromáticos/química , Hidrocarbonetos Aromáticos/farmacologia , Masculino , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/patologia , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Purinas/química , Purinas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Biol Chem ; 292(8): 3433-3444, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28077578

RESUMO

Y box protein 1 (YBX1) is a well known oncoprotein that has tumor-promoting functions. YBX1 is widely considered to be an attractive therapeutic target in cancer. To develop novel therapeutics to target YBX1, it is of great importance to understand how YBX1 is finely regulated in cancer. Previously, we have shown that YBX1 could function as a tumor promoter through phosphorylation of its Ser-165 residue, leading to the activation of the NF-κB signaling pathway (1). In this study, using mass spectrometry analysis, we discovered a distinct phosphorylation site, Ser-176, on YBX1. Overexpression of the YBX1-S176A (serine-to-alanine) mutant in either HEK293 cells or colon cancer HT29 cells showed dramatically reduced NF-κB-activating ability compared with that of WT-YBX1, confirming that Ser-176 phosphorylation is critical for the activation of NF-κB by YBX1. Importantly, the mutant of Ser-176 and the previously reported Ser-165 sites regulate distinct groups of NF-κB target genes, suggesting the unique and irreplaceable function of each of these two phosphorylated serine residues. Our important findings could provide a novel cancer therapy strategy by blocking either Ser-176 or Ser-165 phosphorylation or both of YBX1 in colon cancer.


Assuntos
Colo/patologia , Neoplasias do Colo/metabolismo , NF-kappa B/metabolismo , Serina/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Sequência de Aminoácidos , Proliferação de Células , Colo/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Citocinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HT29 , Humanos , Fosforilação , Serina/análise , Proteína 1 de Ligação a Y-Box/análise
8.
Oncotarget ; 6(30): 29396-412, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26318844

RESUMO

Y-box binding protein 1 [YBX1] is a multifunctional protein known to facilitate many of the hallmarks of cancer. Elevated levels of YBX1 protein are highly correlated with cancer progression, making it an excellent marker in cancer. The connection between YBX1 and the important nuclear factor κB [NF-κB] has never been reported. Here, we show that overexpression of wild type YBX1 [WT-YBX1] activates NF-κB, suggesting that YBX1 is a potential NF-κB activator. Furthermore, using mass spectrometry analysis we identified novel phosphorylation of serine 165 [S165] on YBX1. Overexpression of the S165A-YBX1 mutant in either HEK293 cells or colon cancer HT29 cells showed dramatically reduced NF-κB activating ability as compared with that of WT-YBX1, confirming that S165 phosphorylation is critical for the activation of NF-κB by YBX1. We also show that expression of the S165A-YBX1 mutant dramatically decreased the expression of NF-κB-inducible genes, reduced cell growth, and compromised tumorigenic ability as compared with WT-YBX1. Taken together, we provide the first evidence that YBX1 functions as a tumor promoter via NF-κB activation, and phosphorylation of S165 of YBX1 is critical for this function. Therefore, our important discovery may lead to blocking S165 phosphorylation as a potential therapeutic strategy to treat colon cancer.


Assuntos
Neoplasias do Colo/metabolismo , Fator de Transcrição RelA/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Proliferação de Células , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Células HEK293 , Células HT29 , Humanos , Proteínas I-kappa B/metabolismo , Mutação , Inibidor de NF-kappaB alfa , Fosforilação , Serina , Transdução de Sinais , Espectrometria de Massas em Tandem , Fatores de Tempo , Fator de Transcrição RelA/genética , Transfecção , Proteína 1 de Ligação a Y-Box/genética
9.
J Biol Chem ; 290(33): 20336-47, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26082493

RESUMO

Nuclear factor κB (NF-κB) is a central coordinator in immune and inflammatory responses. Constitutive NF-κB is often found in some types of cancers, contributing to oncogenesis and tumor progression. Therefore, knowing how NF-κB is regulated is important for its therapeutic control. Post-translational modification of the p65 subunit of NF-κB is a well known approach for its regulation. Here, we reported that in response to interleukin 1ß, the p65 subunit of NF-κB is phosphorylated on the novel serine 316. Overexpression of S316A (serine 316 → alanine) mutant exhibited significantly reduced ability to activate NF-κB and decreased cell growth as compared with wtp65 (wild type p65). Moreover, conditioned media from cells expressing the S316A-p65 mutant had a considerably lower ability to induce NF-κB than that of wtp65. Our data suggested that phosphorylation of p65 on Ser-316 controls the activity and function of NF-κB. Importantly, we found that phosphorylation at the novel Ser-316 site and other two known phosphorylation sites, Ser-529 and Ser-536, either individually or cooperatively, regulated distinct groups of NF-κB-dependent genes, suggesting the unique role of each individual phosphorylation site on NF-κB-dependent gene regulation. Our novel findings provide an important piece of evidence regarding differential regulation of NF-κB-dependent genes through phosphorylation of different p65 serine residues, thus shedding light on novel mechanisms for the pathway-specific control of NF-κB. This knowledge is key to develop strategies for prevention and treatment of constitutive NF-κB-driven inflammatory diseases and cancers.


Assuntos
Regulação da Expressão Gênica/fisiologia , Serina/metabolismo , Fator de Transcrição RelA/fisiologia , Animais , Linhagem Celular , Células Cultivadas , Humanos , Camundongos , Fosforilação , Espectrometria de Massas em Tandem , Fator de Transcrição RelA/química , Fator de Transcrição RelA/metabolismo
10.
Genes Dis ; 2(3): 240-246, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30258867

RESUMO

Y box binding protein-1 (YBX1) belongs to a DNA- and RNA-binding family of transcription factors, containing the highly conserved cold shock domain (CSD). YBX1 is involved in a number of cellular functions including transcription, translation, DNA damage repair etc., and it is upregulated during times of environmental stress. YBX1 is localized in both the cytoplasm and the nucleus. There, its nuclear translocation is observed in a number of cancers and is associated with poor prognosis and disease progression. Additionally, YBX1 expression is upregulated in a variety of cancers, pointing towards its role as a potential oncogene. Under certain circumstances, YBX1 also promotes the expression of multidrug resistance 1 (MDR1) gene, which is involved in the development of drug resistance. Thus, it is critical to understand the mechanism of YBX1 regulation and its downstream effects on promoting cancer development. A number of recent studies have highlighted the mechanisms of YBX1 regulation. Mass spectrometric analyses have reported several post-translational modifications that possibly play an important role in modulating YBX1 function. Phosphorylation is the most widely occurring post-translational modification in YBX1. In vivo analyses of sites like S102 and more recently, S165 illustrate the relationship of post-translational regulation of YBX1 in promoting cell proliferation and tumor growth. This review provides a comprehensive and up-to-date account of post-translational modifications identified in YBX1. This knowledge is a key in allowing us to better understand the mechanism of YBX1 regulation, which will aid in development of novel therapeutic strategies to target YBX1 in many types of cancer in the future.

11.
Oncotarget ; 5(22): 10969-75, 2014 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-25473891

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, and in spite of intense efforts there are limited therapeutic options for patients with PDAC. PDACs harbor a high frequency of Kras mutations and other driver mutations that lead to altered signaling pathways and contribute to therapeutic resistance. Importantly, constitutive activation of nuclear factor κB (NF-κB) is frequently observed in PDAC. An increasing body of evidence suggests that both classical and non-classical NF-κB pathways play a crucial role in PDAC development and progression. In this review, we update the most recent advances regarding different aspects of NF-κB involvement in PDAC development and progression, emphasizing its potential as a therapeutic target and the need to discover pathway-specific cytosolic NF-κB regulators which could be used to design novel therapeutic strategies for PDAC.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , NF-kappa B/metabolismo , Animais , Carcinoma Ductal Pancreático/patologia , Humanos
12.
Cell Cycle ; 13(18): 2847-52, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25486472

RESUMO

Many biologically significant processes, such as cell differentiation and cell cycle progression, gene transcription and DNA replication, chromosome stability and epigenetic silencing etc. depend on the crucial interactions between cellular proteins and DNA. Chromatin immunoprecipitation (ChIP) is an important experimental technique for studying interactions between specific proteins and DNA in the cell and determining their localization on a specific genomic locus. In recent years, the combination of ChIP with second generation DNA-sequencing technology (ChIP-seq) allows precise genomic functional assay. This review addresses the important applications of ChIP-seq with an emphasis on its role in genome-wide mapping of transcription factor binding sites, the revelation of underlying molecular mechanisms of differential gene regulation that are governed by specific transcription factors, and the identification of epigenetic marks. Furthermore, we also describe the ChIP-seq data analysis workflow and a perspective for the exciting potential advancement of ChIP-seq technology in the future.


Assuntos
Imunoprecipitação da Cromatina/métodos , Epigênese Genética , Perfilação da Expressão Gênica , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo , Sítios de Ligação , Histonas/metabolismo , Humanos
13.
Oncoscience ; 1(6): 400-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25594038

RESUMO

Epithelial cancer of the colon and rectum, also known as colorectal cancer (CRC), results from a progressive accumulation of genetic and epigenetic alterations that lead to uncontrolled growth of colonocytes, the cells lining the colon and rectum. CRC is the second leading cause of cancer-related deaths and the third most common cancer in men and in women in the U.S. Of all the patients diagnosed with CRC every year, it is estimated that the vast majority of CRCs are non-hereditary "sporadic cancers" with no apparent evidence of an inherited component. Sporadic CRC results from the cumulative effects of multiple genetic and epigenetic alterations caused by somatic mutations, which may themselves be the indirect result of several environmental factors. This review examines our current understanding of the major genetic alterations leading to colon cancer, options for prevention and early detection of CRC, and the currently available treatment approaches that may target these different genetic alterations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA