Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38293232

RESUMO

Purpose: Uveal melanoma (UM) is a highly aggressive disease with very few treatment options. We previously demonstrated that mUM is characterized by high oxidative phosphorylation (OXPHOS). Here we tested the anti-tumor, signaling and metabolic effects of imipridones, CLPP activators which reduce OXPHOS indirectly and have demonstrated safety in patients. Experimental Design: We assessed CLPP expression in UM patient samples. We tested the effects of imipridones (ONC201, ONC212) on the growth, survival, signaling and metabolism of UM cell lines in vitro, and for therapeutic effects in vivo in UM liver metastasis models. Results: CLPP expression was confirmed in primary and mUM patient samples. ONC201/212 treatment of UM cell lines in vitro decreased OXPHOS effectors, inhibited cell growth and migration, and induced apoptosis. ONC212 increased metabolic stress and apoptotic pathways, inhibited amino acid metabolism, and induced cell death-related lipids. ONC212 also decreased tumor burden and increased survival in vivo in two UM liver metastasis models. Conclusion: Imipridones are a promising strategy for further testing and development in mUM.

2.
Cancer Biol Ther ; 24(1): 2202104, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37069726

RESUMO

Poly ADP-ribose polymerase (PARP) inhibitors are effective therapies for cancer patients with homologous recombination (HR) deficient tumors. The imipridone ONC206 is an orally bioavailable dopamine receptor D2 antagonist and mitochondrial protease ClpP agonist that has anti-tumorigenic effects in endometrial cancer via induction of apoptosis, activation of the integrated stress response and modulation of PI3K/AKT signaling. Both PARP inhibitors and imipridones are being evaluated in endometrial cancer clinical trials but have yet to be explored in combination. In this manuscript, we evaluated the effects of the PARP inhibitor olaparib in combination with ONC206 in human endometrioid endometrial cancer cell lines and in a genetically engineered mouse model of endometrial cancer. Our results showed that simultaneous exposure of endometrial cancer cells to olaparib and ONC206 resulted in synergistic anti-proliferative effects and increased cellular stress and apoptosis in both cell lines, compared to either drug alone. The combination treatment also decreased expression of the anti-apoptotic protein Bcl-2 and reduced phosphorylation of AKT and S6, with greater effects compared to either drug alone. In the transgenic model of endometrial cancer, the combination of olaparib and ONC206 resulted in a more significant reduction in tumor weight in obese and lean mice compared to ONC206 alone or olaparib alone, together with a considerably decreased Ki-67 and enhanced H2AX expression in obese and lean mice. These results suggest that this novel dual therapy may be worthy of further exploration in clinical trials.


Assuntos
Antineoplásicos , Neoplasias do Endométrio , Feminino , Humanos , Camundongos , Animais , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Proliferação de Células , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Receptores Dopaminérgicos
3.
Am J Cancer Res ; 12(2): 521-536, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35261784

RESUMO

ONC206, a dopamine receptor D2 (DRD2) antagonist and imipridone, is a chemically modified derivative of ONC201. Recently, ONC206 and other imipridones were identified as activators of the mitochondrial protease ClpP, inducing downstream pathways that allow them to selectively target cancer cells. Clinical trials showed that ONC201, the first in class imipridone, was well tolerated and exhibited tumor regression in some solid tumors. Our goal was to evaluate the effect of ONC206 on cell proliferation and tumor growth in ovarian cancer cell lines and in a transgenic mouse model of high grade serous ovarian cancer (KpB model). ONC206 was more potent than ONC201 in inhibiting cell proliferation, as evidenced by a 10-fold decrease in IC50 for the SKOV3 and OVCAR5 cell lines. This was accompanied by the results that ONC206 significantly inhibited cellular proliferation, induced cell cycle G1 arrest and apoptosis, caused cellular stress, and inhibited adhesion and invasion in vitro. Treatment of obese and non-obese KpB mice with ONC206 elevated Bip and ClpP expression and reduced KI67, BCL-XL and DRD2 expression in the ovarian tumors. Our findings demonstrate that ONC206 has anti-tumorigenic effects in ovarian cancer as previously demonstrated by ONC201 but appears to be as well tolerated and more potent. Thus, ONC206 deserves further evaluation in clinical trials.

4.
Am J Cancer Res ; 11(11): 5374-5387, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34873466

RESUMO

Endometrial cancer (EC) is a highly obesity-driven cancer, with limited treatment options. ONC201 is an imipridone that selectively antagonizes the G protein-coupled receptors dopamine receptor D2 and D3 (DRD2/3) and activates human mitochondrial caseinolytic protease P (ClpP). It is a promising first-in-class small molecule that has been reported to have anti-neoplastic activity in various types of cancer through induction of the integrated stress response (ISR) as well as through stimulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and subsequent induction of apoptosis. ONC201 is being evaluated in Phase II clinical trials for solid tumors and hematological malignancies, including EC. ONC206 is an analog of ONC201 with nanomolar potency in Phase I clinical trials. This study evaluated the anti-tumor efficacy of ONC206 in EC cell lines and the Lkb1fl/flp53fl/fl genetically engineered mouse model of endometrioid EC. ONC206 revealed greater potency than ONC201 in the inhibition of proliferation in EC cell lines, with IC50 concentration ranges of 0.21-0.32 µM for ONC026 versus 2.14-3.53 µM for ONC201. ONC206 induced cellular stress, apoptosis and cell cycle G1 arrest, accompanied by inhibition of the AKT/mTOR/S6 pathways in EC cells. Diet-induced obesity accelerated tumor growth in Lkb1fl/flp53fl/fl mice. ONC206 inhibited EC tumor size and weight in both obese and lean mice after 4 weeks of treatment. Treatment with ONC206 led to a decrease in expression of Ki67, BCL-XL and phosphorylation of S6, as well as an increase in ClpP in endometrial tumors under both obese and lean conditions. Overall, the pre-clinical efficacy of ONC206 is promising and worthy of further exploration in clinical trials for endometrioid EC.

5.
J Exp Clin Cancer Res ; 40(1): 61, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33557912

RESUMO

BACKGROUND: ONC201 is a dopamine receptor D2 (DRD2) antagonist that inhibits tumor growth in preclinical models through ClpP activation to induce integrated stress response pathway and mitochondrial events related to inhibition of cell growth, which is being explored in clinical trials for solid tumors and hematological malignancies. In this study, we investigated the anti-tumorigenic effect of ONC201 in endometrial cancer cell lines and a genetically engineered mouse model of endometrial cancer. METHODS: Cell proliferation was assessed by MTT and colony formation assays. Cell cycle and apoptosis were evaluated by Cellometer. Invasion capacity was tested using adhesion, transwell and wound healing assays. LKB1fl/flp53fl/fl mouse model of endometrial cancer were fed a control low fat diet versus a high fat diet to mimic diet-induced obesity. Following tumor onset, mice were treated with placebo or ONC201. Metabolomics and lipidomics were used to identify the obesity-dependent effects of ONC201 in the mouse endometrial tumors. DRD2 expression was analyzed by immunohistochemistry in human endometrioid and serous carcinoma specimens. DRD2 mRNA expression from the Cancer Genome Atlas (TCGA) database was compared between the four molecular subtypes of endometrial cancer. RESULTS: Increasing DRD2 expression in endometrial cancer was significantly associated with grade, serous histology and stage, as well as worse progression free survival and overall survival. Higher expression of DRD2 mRNA was found for the Copy Number High (CNH) subtype when compared to the other subtypes. ONC201 inhibited cell proliferation, induced cell cycle G1 arrest, caused cellular stress and apoptosis and reduced invasion in endometrial cancer cells. Diet-induced obesity promoted endometrial tumor growth while ONC201 exhibited anti-tumorigenic efficacy in the obese and lean LKB1fl/fl/p53fl/fl mice. Metabolomic analysis demonstrated that ONC201 reversed the obesity-driven upregulation of lipid biosynthesis and reduced protein biosynthesis in obese and lean mice. CONCLUSION: ONC201 has anti-tumorigenic effects in endometrial cancer cells and a transgenic mouse model of endometrial cancer, and DRD2 expression was documented in both human serous and endometrioid endometrial cancer. These studies support DRD2 antagonism via ONC201 as a promising therapeutic strategy for endometrial cancer that has already demonstrated pharmacodynamic activity and clinical benefit in both serous and endometrioid endometrial cancer patients.


Assuntos
Neoplasias do Endométrio/tratamento farmacológico , Animais , Proliferação de Células , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Invasividade Neoplásica
6.
Neoplasia ; 22(12): 725-744, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33142238

RESUMO

ONC201 was originally discovered as TNF-Related Apoptosis Inducing Ligand (TRAIL)-inducing compound TIC10. ONC201 appears to act as a selective antagonist of the G protein coupled receptor (GPCR) dopamine receptor D2 (DRD2), and as an allosteric agonist of mitochondrial protease caseinolytic protease P (ClpP). Downstream of target engagement, ONC201 activates the ATF4/CHOP-mediated integrated stress response leading to TRAIL/Death Receptor 5 (DR5) activation, inhibits oxidative phosphorylation via c-myc, and inactivates Akt/ERK signaling in tumor cells. This typically results in DR5/TRAIL-mediated apoptosis of tumor cells; however, DR5/TRAIL-independent apoptosis, cell cycle arrest, or antiproliferative effects also occur. The effects of ONC201 extend beyond bulk tumor cells to include cancer stem cells, cancer associated fibroblasts and immune cells within the tumor microenvironment that can contribute to its efficacy. ONC201 is orally administered, crosses the intact blood brain barrier, and is under evaluation in clinical trials in patients with advanced solid tumors and hematological malignancies. ONC201 has single agent clinical activity in tumor types that are enriched for DRD2 and/or ClpP expression including specific subtypes of high-grade glioma, endometrial cancer, prostate cancer, mantle cell lymphoma, and adrenal tumors. Synergy with radiation, chemotherapy, targeted therapy and immune-checkpoint agents has been identified in preclinical models and is being evaluated in clinical trials. Structure-activity relationships based on the core pharmacophore of ONC201, termed the imipridone scaffold, revealed novel potent compounds that are being developed. Imipridones represent a novel approach to therapeutically target previously undruggable GPCRs, ClpP, and innate immune pathways in oncology.


Assuntos
Antineoplásicos/farmacologia , Imidazóis/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Animais , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Estudos Clínicos como Assunto , Ensaios Clínicos como Assunto , Suscetibilidade a Doenças , Avaliação Pré-Clínica de Medicamentos , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Piridinas/uso terapêutico , Pirimidinas/uso terapêutico , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/agonistas , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA