Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain Commun ; 6(1): fcad252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38162898

RESUMO

Stroke alters blood flow to the brain resulting in damaged tissue and cell death. Moreover, the disruption of cerebral blood flow (perfusion) can be observed in areas surrounding and distal to the lesion. These structurally preserved but suboptimally perfused regions may also affect recovery. Thus, to better understand aphasia recovery, the relationship between cerebral perfusion and language needs to be systematically examined. In the current study, we aimed to evaluate (i) how stroke affects perfusion outside of lesioned areas in chronic aphasia and (ii) how perfusion in specific cortical areas and perilesional tissue relates to language outcomes in aphasia. We analysed perfusion data from a large sample of participants with chronic aphasia due to left hemisphere stroke (n = 43) and age-matched healthy controls (n = 25). We used anatomically defined regions of interest that covered the frontal, parietal, and temporal areas of the perisylvian cortex in both hemispheres, areas typically known to support language, along with several control regions not implicated in language processing. For the aphasia group, we also looked at three regions of interest in the perilesional tissue. We compared perfusion levels between the two groups and investigated the relationship between perfusion levels and language subtest scores while controlling for demographic and lesion variables. First, we observed that perfusion levels outside the lesioned areas were significantly reduced in frontal and parietal regions in the left hemisphere in people with aphasia compared to the control group, while no differences were observed for the right hemisphere regions. Second, we found that perfusion in the left temporal lobe (and most strongly in the posterior part of both superior and middle temporal gyri) and inferior parietal areas (supramarginal gyrus) was significantly related to residual expressive and receptive language abilities. In contrast, perfusion in the frontal regions did not show such a relationship; no relationship with language was also observed for perfusion levels in control areas and all right hemisphere regions. Third, perilesional perfusion was only marginally related to language production abilities. Cumulatively, the current findings demonstrate that blood flow is reduced beyond the lesion site in chronic aphasia and that hypoperfused neural tissue in critical temporoparietal language areas has a negative impact on behavioural outcomes. These results, using perfusion imaging, underscore the critical and general role that left hemisphere posterior temporal regions play in various expressive and receptive language abilities. Overall, the study highlights the importance of exploring perfusion measures in stroke.

2.
Front Neurol ; 14: 1187399, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576017

RESUMO

Introduction: Apraxia of speech (AOS) is a motor speech disorder impairing the coordination of complex articulatory movements needed to produce speech. AOS typically co-occurs with a non-fluent aphasia, or language disorder, making it challenging to determine the specific brain structures that cause AOS. Cases of pure AOS without aphasia are rare but offer the best window into the neural correlates that support articulatory planning. The goal of the current study was to explore patterns of apraxic speech errors and their underlying neural correlates in a case of pure AOS. Methods: A 67-year-old right-handed man presented with severe AOS resulting from a fronto-insular lesion caused by an ischemic stroke. The participant's speech and language were evaluated at 1-, 3- and 12-months post-onset. High resolution structural MRI, including diffusion weighted imaging, was acquired at 12 months post-onset. Results: At the first assessment, the participant made minor errors on the Comprehensive Aphasia Test, demonstrating mild deficits in writing, auditory comprehension, and repetition. By the second assessment, he no longer had aphasia. On the Motor Speech Evaluation, the severity of his AOS was initially rated as 5 (out of 7) and improved to a score of 4 by the second visit, likely due to training by his SLP at the time to slow his speech. Structural MRI data showed a fronto-insular lesion encompassing the superior precentral gyrus of the insula and portions of the inferior and middle frontal gyri and precentral gyrus. Tractography derived from diffusion MRI showed partial damage to the frontal aslant tract and arcuate fasciculus along the white matter projections to the insula. Discussion: This pure case of severe AOS without aphasia affords a unique window into the behavioral and neural mechanisms of this motor speech disorder. The current findings support previous observations that AOS and aphasia are dissociable and confirm a role for the precentral gyrus of the insula and BA44, as well as underlying white matter in supporting the coordination of complex articulatory movements. Additionally, other regions including the precentral gyrus, Broca's area, and Area 55b are discussed regarding their potential role in successful speech production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA