Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Aging Cell ; 22(6): e13821, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36951231

RESUMO

Aging biology entails a cell/tissue deregulated metabolism that affects all levels of biological organization. Therefore, the application of "omic" techniques that are closer to phenotype, such as metabolomics, to the study of the aging process should be a turning point in the definition of cellular processes involved. The main objective of the present study was to describe the changes in plasma metabolome associated with biological aging and the role of sex in the metabolic regulation during aging. A high-throughput untargeted metabolomic analysis was applied in plasma samples to detect hub metabolites and biomarkers of aging incorporating a sex/gender perspective. A cohort of 1030 healthy human adults (45.9% females, and 54.1% males) from 50 to 98 years of age was used. Results were validated using two independent cohorts (1: n = 146, 53% females, 30-100 years old; 2: n = 68, 70% females, 19-107 years old). Metabolites related to lipid and aromatic amino acid (AAA) metabolisms arose as the main metabolic pathways affected by age, with a high influence of sex. Globally, we describe changes in bioenergetic pathways that point to a decrease in mitochondrial ß-oxidation and an accumulation of unsaturated fatty acids and acylcarnitines that could be responsible for the increment of oxidative damage and inflammation characteristic of this physiological process. Furthermore, we describe for the first time the importance of gut-derived AAA catabolites in the aging process describing novel biomarkers that could contribute to better understand this physiological process but also age-related diseases.


Assuntos
Aminoácidos Aromáticos , Metaboloma , Masculino , Feminino , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Adulto Jovem , Aminoácidos Aromáticos/metabolismo , Envelhecimento/metabolismo , Metabolômica/métodos , Biomarcadores/metabolismo
2.
Cancers (Basel) ; 14(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35740505

RESUMO

Metabolomic profiling analysis has the potential to highlight new molecules and cellular pathways that may serve as potential therapeutic targets for disease treatment. In this study, we used an LC-MS/MS platform to define, for the first time, the specific metabolomic signature of uterine serous carcinoma (SC), a relatively rare and aggressive variant of endometrial cancer (EC) responsible for 40% of all endometrial cancer-related deaths. A metabolomic analysis of 31 ECs (20 endometrial endometrioid carcinomas (EECs) and 11 SCs) was performed. Following multivariate statistical analysis, we identified 232 statistically different metabolites among the SC and EEC patient samples. Notably, most of the metabolites identified (89.2%) were lipid species and showed lower levels in SCs when compared to EECs. In addition to lipids, we also documented metabolites belonging to amino acids and purine nucleotides (such as 2-Oxo-4-methylthiobutanoic acid, synthesised by acireductone dioxygenase 1 (ADI1) enzyme), which showed higher levels in SCs. To further investigate the role of ADI1 in SC, we analysed the expression protein levels of ADI1 in 96 ECs (67 EECs and 29 SCs), proving that the levels of ADI1 were higher in SCs compared to EECs. We also found that ADI1 mRNA levels were higher in p53 abnormal ECs compared to p53 wild type tumours. Furthermore, elevated ADI1 mRNA levels showed a statistically significant negative correlation with overall survival and progression-free survival among EEC patients. Finally, we tested the ability of ADI1 to induce migration and invasion capabilities in EC cell lines. Altogether, these results suggest that ADI1 could be a potential therapeutic target in poor-prognosis SCs and other Ecs with abnormal p53 expression.

3.
J Gerontol A Biol Sci Med Sci ; 77(4): 728-735, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871393

RESUMO

A species-specific lipidome profile is an inherent feature linked to longevity in the animal kingdom. However, there is a lack of lipidomic studies on human longevity. Here, we use mass spectrometry-based lipidomics to detect and quantify 151 sphingolipid molecular species and use these to define a phenotype of healthy humans with exceptional life span. Our results demonstrate that this profile specifically comprises a higher content of complex glycosphingolipids (hexosylceramides and gangliosides), and lower levels of ceramide species from the de novo pathway, sphingomyelin and sulfatide; while for ceramide-derived signaling compounds, their content remains unchanged. Our findings suggest that structural glycosphingolipids may be more relevant to achieve the centenarian condition than signaling sphingolipids.


Assuntos
Ceramidas , Esfingolipídeos , Idoso de 80 Anos ou mais , Animais , Ceramidas/metabolismo , Humanos , Lipidômica , Longevidade , Esfingomielinas
4.
Free Radic Biol Med ; 162: 38-52, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271279

RESUMO

Available evidences point to methionine metabolism as a key target to study the molecular adaptive mechanisms underlying differences in longevity. The plasma methionine metabolic profile was determined using a LC-MS/MS platform to systematically define specific phenotypic patterns associated with genotypes of human extreme longevity (centenarians). Our findings demonstrate the presence of a specific plasma profile associated with human longevity characterized by an enhanced transsulfuration pathway and tricarboxylic acid (TCA) cycle intermediates, as well as a reduced content of specific amino acids. Furthermore, our work reveals that centenarians maintain a strongly correlated methionine metabolism, suggesting an improved network integrity, homeostasis and more tightly regulated metabolism. We have discovered a particular methionine signature related to the condition of extreme longevity, allowing the identification of potential mechanisms and biomarkers of healthy aging.


Assuntos
Metionina , Espectrometria de Massas em Tandem , Idoso de 80 Anos ou mais , Cromatografia Líquida , Humanos , Longevidade/genética , Metaboloma , Metionina/metabolismo
5.
Antioxidants (Basel) ; 9(11)2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33203089

RESUMO

The nonenzymatic adduction of malondialdehyde (MDA) to the protein amino groups leads to the formation of malondialdehyde-lysine (MDALys). The degree of unsaturation of biological membranes and the intracellular oxidative conditions are the main factors that modulate MDALys formation. The low concentration of this modification in the different cellular components, found in a wide diversity of tissues and animal species, is indicative of the presence of a complex network of cellular protection mechanisms that avoid its cytotoxic effects. In this review, we will focus on the chemistry of this lipoxidation-derived protein modification, the specificity of MDALys formation in proteins, the methodology used for its detection and quantification, the MDA-lipoxidized proteome, the metabolism of MDA-modified proteins, and the detrimental effects of this protein modification. We also propose that MDALys is an indicator of the rate of aging based on findings which demonstrate that (i) MDALys accumulates in tissues with age, (ii) the lower the concentration of MDALys the greater the longevity of the animal species, and (iii) its concentration is attenuated by anti-aging nutritional and pharmacological interventions.

6.
Molecules ; 25(18)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971886

RESUMO

Lipids were determinants in the appearance and evolution of life. Recent studies disclose the existence of a link between lipids and animal longevity. Findings from both comparative studies and genetics and nutritional interventions in invertebrates, vertebrates, and exceptionally long-lived animal species-humans included-demonstrate that both the cell membrane fatty acid profile and lipidome are a species-specific optimized evolutionary adaptation and traits associated with longevity. All these emerging observations point to lipids as a key target to study the molecular mechanisms underlying differences in longevity and suggest the existence of a lipidome profile of long life.


Assuntos
Membrana Celular/metabolismo , Metabolismo dos Lipídeos , Longevidade , Animais , Humanos
7.
Geroscience ; 42(4): 1157-1173, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32578071

RESUMO

Species longevity varies significantly across animal species, but the underlying molecular mechanisms remain poorly understood. Recent studies and omics approaches suggest that phenotypic traits of longevity could converge in the mammalian target of rapamycin (mTOR) signalling pathway. The present study focuses on the comparative approach in heart tissue from 8 mammalian species with a ML ranging from 3.5 to 46 years. Gene expression, protein content, and concentration of regulatory metabolites of the mTOR complex 1 (mTORC1) were measured using droplet digital PCR, western blot, and mass spectrometry, respectively. Our results demonstrate (1) the existence of differences in species-specific gene expression and protein content of mTORC1, (2) that the achievement of a high longevity phenotype correlates with decreased and inhibited mTORC1, (3) a decreased content of mTORC1 activators in long-lived animals, and (4) that these differences are independent of phylogeny. Our findings, taken together, support an important role for mTORC1 downregulation in the evolution of long-lived mammals.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Longevidade , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Expressão Gênica , Longevidade/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Fosforilação , Proteína Regulatória Associada a mTOR/genética , Proteína Regulatória Associada a mTOR/metabolismo , Sirolimo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
8.
Redox Biol ; 34: 101539, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32353747

RESUMO

Mitochondrial reactive oxygen species (ROS) production, specifically at complex I (Cx I), has been widely suggested to be one of the determinants of species longevity. The present study follows a comparative approach to analyse complex I in heart tissue from 8 mammalian species with a longevity ranging from 3.5 to 46 years. Gene expression and protein content of selected Cx I subunits were analysed using droplet digital PCR (ddPCR) and western blot, respectively. Our results demonstrate: 1) the existence of species-specific differences in gene expression and protein content of Cx I in relation to longevity; 2) the achievement of a longevity phenotype is associated with low protein abundance of subunits NDUFV2 and NDUFS4 from the matrix hydrophilic domain of Cx I; and 3) long-lived mammals show also lower levels of VDAC (voltage-dependent anion channel) amount. These differences could be associated with the lower mitochondrial ROS production and slower aging rate of long-lived animals and, unexpectedly, with a low content of the mitochondrial permeability transition pore in these species.


Assuntos
Complexo I de Transporte de Elétrons , Longevidade , Animais , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Longevidade/genética , Mamíferos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
Front Aging Neurosci ; 12: 52, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210786

RESUMO

Human brain evolution toward complexity has been achieved with increasing energy supply as the main adaptation in brain metabolism. Energy metabolism, like other biochemical reactions in aerobic cells, is under enzymatic control and strictly regulated. Nevertheless, physiologically uncontrolled and deleterious reactions take place. It has been proposed that these reactions constitute the basic molecular mechanisms that underlie the maintenance or loss-of-function of neurons and, by extension, cerebral functions during brain aging. In this review article, we focus attention on the role of the nonenzymatic and irreversible adduction of fumarate to the protein thiols, which leads to the formation of S-(2-succino)cysteine (2SC; protein succination) in the human brain. In particular, we first offer a brief approach to the succination reaction, features related to the specificity of protein succination, methods for their detection and quantification, the bases for considering 2SC as a biomarker of mitochondrial stress, the succinated proteome, the cross-regional differences in 2SC content, and changes during brain aging, as well as the potential regulatory significance of fumarate and 2SC. We propose that 2SC defines cross-regional differences of metabolic mitochondrial stress in the human brain and that mitochondrial stress is sustained throughout the healthy adult lifespan in order to preserve neuronal function and survival.

10.
Metabolites ; 9(11)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739579

RESUMO

Methionine restriction (MetR) in animal models extends maximum longevity and seems to promote renoprotection by attenuating kidney injury. MetR has also been proven to affect several metabolic pathways including lipid metabolism. However, there is a lack of studies about the effect of MetR at old age on the kidney metabolome. In view of this, a mass spectrometry-based high-throughput metabolomic and lipidomic profiling was undertaken of renal cortex samples of three groups of male rats-An 8-month-old Adult group, a 26-month-old Aged group, and a MetR group that also comprised of 26-month-old rats but were subjected to an 80% MetR diet for 7 weeks. Additionally, markers of mitochondrial stress and protein oxidative damage were analyzed by mass spectrometry. Our results showed minor changes during aging in the renal cortex metabolome, with less than 59 differential metabolites between the Adult and Aged groups, which represents about 4% of changes in the kidney metabolome. Among the compounds identified are glycerolipids and lipid species derived from arachidonic acid metabolism. MetR at old age preferentially induces lipid changes affecting glycerophospholipids, docosanoids, and eicosanoids. No significant differences were observed between the experimental groups in the markers of mitochondrial stress and tissue protein damage. More than rejuvenation, MetR seems to induce a metabolic reprogramming.

11.
Sci Rep ; 9(1): 16033, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690730

RESUMO

Metformin is one of the treatments used for PCOS pathology decreasing body weight, plasma androgen, FSH and glucose levels. Unfortunately, there is little known about metformin's effects on lipid metabolism, a crucial process in PCOS pathology. We have employed a lipidomic approach to explore alterations in the plasma lipid profile of patients with PCOS following metformin treatment. The aim is to offer new insights about the effect of metformin in PCOS patients. Plasma samples were obtained from 27 subjects prior to and following 12 weeks of metformin treatment. A detailed biochemical characterization and lipidomic profile was performed. Metformin reduces BMI, HOMA-IR, FSH and androstenedione and increases DHEA-S but no changes were found in glucose levels after treatment. Multivariate statistics revealed a specific lipidomic signature due to the effect of 12 weeks of metformin treatment in PCOS patients. This signature includes changes in sphingolipid metabolism suggesting a crosstalk between these lipid species and the androgenic metabolism and a decrease in oxidized lipids reinforcing that metformin treatment improves oxidative stress status. Our study confirms the specific effect of metformin in lipid metabolism on women with PCOS after 12 weeks of treatment.


Assuntos
Metformina/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Síndrome do Ovário Policístico , Esfingolipídeos/sangue , Feminino , Humanos , Oxirredução/efeitos dos fármacos , Síndrome do Ovário Policístico/sangue , Síndrome do Ovário Policístico/tratamento farmacológico
12.
Free Radic Biol Med ; 144: 310-321, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30898667

RESUMO

Human prefrontal cortex (PFC) is a recently evolutionary emerged brain region involved in cognitive functions. Human cognitive abilities decline during aging. Yet the molecular mechanisms that sustain the preservation or deterioration of neurons and PFC functions are unknown. In this review, we focus on the role of lipids in human PFC aging. As the evolution of brain lipid concentrations is particularly accelerated in the human PFC, conferring a specific lipid profile, a brief approach to the lipidome of PFC was consider along with the relationship between lipids and lipoxidative damage, and the role of lipids in human PFC aging. In addition, the specific targets of lipoxidative damage in human PFC, the affected biological processes, and their potential role in the cognitive decline associated with aging are discussed. Finally, interventions designed to modify this process are considered. We propose that the dysfunction of key biological processes due to selective protein lipoxidation damage may have a role the cognitive decline of PFC during aging.


Assuntos
Envelhecimento/metabolismo , Disfunção Cognitiva/metabolismo , Ácidos Graxos Insaturados/metabolismo , Glicerofosfolipídeos/metabolismo , Córtex Pré-Frontal/metabolismo , Esfingolipídeos/metabolismo , Adulto , Restrição Calórica , Cognição , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/prevenção & controle , Proteínas do Citoesqueleto/metabolismo , Metabolismo Energético , Exercício Físico , Humanos , Metabolismo dos Lipídeos , Pessoa de Meia-Idade , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo , Córtex Pré-Frontal/fisiopatologia
13.
Rev Esp Geriatr Gerontol ; 54(2): 88-93, 2019.
Artigo em Espanhol | MEDLINE | ID: mdl-30879491

RESUMO

BACKGROUND: The glycerophospholipids, synthesised from diacylglycerol (DAG), are one of the main lipid components of cell membranes. The lipid profile is an optimised feature associated with animal longevity. In this context, the hypothesis is presented that the DAG biosynthesis rate, and thus, the glycerophospholipids content, is related to animal longevity. MATERIAL AND METHODS: A plasma lipidomic analysis was performed based on the mass spectrometry of 11 mammalian species with a maximum longevity ranging from 3.5 to 120 years. Lipid identification was based on exact mass, retention time, and isotopic distribution. ANOVA test was applied to differentiate the lipids between animal species. The relationship between these lipids and longevity was carried out with a Spearman correlation. Data was analysed using SPSS and MetaboAnalyst. RESULTS: Among the 1,061 different lipid molecular species found between species, 47 were defined as DAG. Interestingly, 14 of them showed a negative correlation with mammalian maximum longevity. Multivariate statistics revealed that 14 DAGs were enough to define mammalian species and their maximum longevity. CONCLUSIONS: Data suggest that long-lived mammalian species have a lower rate of glycerophospholipids synthesis through the de novo pathway, possibly associated with a lower rate of membrane lipid exchange, which in turn is related to lower energy expenditure.


Assuntos
Glicerofosfolipídeos/biossíntese , Longevidade/fisiologia , Mamíferos/metabolismo , Animais
14.
Redox Biol ; 23: 101082, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30635167

RESUMO

The human brain is a target of the aging process like other cell systems of the human body. Specific regions of the human brain exhibit differential vulnerabilities to the aging process. Yet the underlying mechanisms that sustain the preservation or deterioration of neurons and cerebral functions are unknown. In this review, we focus attention on the role of lipids and the importance of the cross-regionally different vulnerabilities in human brain aging. In particular, we first consider a brief approach to the lipidomics of human brain, the relationship between lipids and lipoxidative damage, the role of lipids in human brain aging, and the specific targets of lipoxidative damage in human brain and during aging. It is proposed that the restricted set of modified proteins and the functional categories involved may be considered putative collaborative factors contributing to neuronal aging, and that mitochondrial ATP synthase is a key lipoxidative target in human brain aging.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Metabolismo dos Lipídeos , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Oxirredução , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/metabolismo , Biomarcadores , Encéfalo/patologia , Citoesqueleto/metabolismo , Metabolismo Energético , Humanos , Lipídeos/química , Neurônios/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio , Transmissão Sináptica
15.
Front Physiol ; 9: 1165, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210358

RESUMO

In biological systems lipids generate membranes and have a key role in cell signaling and energy storage. Therefore, there is a wide diversity of molecular lipid expressed at the compositional level in cell membranes and organelles, as well as in tissues, whose lipid distribution remains unclear. Here, we report a mass spectrometry study of lipid abundance across 7 rat tissues, detecting and quantifying 652 lipid molecular species from the glycerolipid, glycerophospholipid, fatty acyl, sphingolipid, sterol lipid and prenol lipid categories. Our results demonstrate that every tissue analyzed presents a specific lipid distribution and concentration. Thus, glycerophospholipids are the most abundant tissue lipid, they share a similar tissue distribution but differ in particular lipid species between tissues. Sphingolipids are more concentrated in the renal cortex and sterol lipids can be found mainly in both liver and kidney. Both types of white adipose tissue, visceral and subcutaneous, are rich in glycerolipids but differing the amount. Acylcarnitines are mainly in the skeletal muscle, gluteus and soleus, while heart presents higher levels of ubiquinone than other tissues. The present study demonstrates the existence of a rat tissue-specific fingerprint.

16.
Oncotarget ; 9(4): 4522-4536, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29435121

RESUMO

PURPOSE: In this work, a non-targeted approach was used to unravel changes in the plasma lipidome of PCOS patients. The aim is to offer new insights in PCOS patients strictly selected in order to avoid confounding factors such as dyslipemia, obesity, altered glucose/insulin metabolism, cardiovascular disease, or cancer. RESULTS: Multivariate statistics revealed a specific lipidomic signature for PCOS patients without associated pathologies. This signature implies changes, mainly by down-regulation, in glycerolipid, glycerophospholipid and sphingolipid metabolism suggesting an altered biosynthetic pathway of glycerophospholipids and cell signaling as second messengers in women with PCOS. CONCLUSIONS: Our study confirms that a lipidomic approach discriminates a specific phenotype from PCOS women without associated pathologies from healthy controls. METHODS: In a cross-sectional pilot study, data were obtained from 34 subjects, allocated to one of two groups: a) lean, healthy controls (n = 20), b) PCOS patients (n = 14) with diagnosis based on hyperandrogenaemia, oligo-anovulation and abnormal ovaries with small follicular cysts. A detailed biochemical characterization was made and lipidomic profiling was performed via an untargeted approach using LC-ESI-QTOF MS/MS.

17.
J Gerontol A Biol Sci Med Sci ; 73(6): 703-710, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28958038

RESUMO

Fatty acids are key components in the structural diversity of lipids and play a strategic role in the functional properties of lipids which determine the structural and functional integrity of neural cell membranes, the generation of lipid signaling mediators, and the chemical reactivity of acyl chains. The present study analyzes the profile of lipid fatty acid composition of membranes of human frontal cortex area 8 in individuals ranging from 40 to 90 years old. Different components involved in polyunsaturated fatty acid biosynthesis pathways, as well as adaptive defense mechanisms involved in the lipid-mediated modulation of inflammation, are also assessed. Our results show that the lipid profile in human frontal cortex is basically preserved through the adult life span to decay at advanced ages, which is accompanied by an adaptive proactive anti-inflammatory response possibly geared to ensuring cell survival and function.


Assuntos
Envelhecimento/metabolismo , Ácidos Graxos/metabolismo , Lobo Frontal/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Cadáver , Cromatografia Gasosa , Humanos , Inflamação/metabolismo , Longevidade , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA