Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Epigenetics ; 16(1): 50, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561804

RESUMO

BACKGROUND: Nucleosome repositioning in cancer is believed to cause many changes in genome organisation and gene expression. Understanding these changes is important to elucidate fundamental aspects of cancer. It is also important for medical diagnostics based on cell-free DNA (cfDNA), which originates from genomic DNA regions protected from digestion by nucleosomes. RESULTS: We have generated high-resolution nucleosome maps in paired tumour and normal tissues from the same breast cancer patients using MNase-assisted histone H3 ChIP-seq and compared them with the corresponding cfDNA from blood plasma. This analysis has detected single-nucleosome repositioning at key regulatory regions in a patient-specific manner and common cancer-specific patterns across patients. The nucleosomes gained in tumour versus normal tissue were particularly informative of cancer pathways, with ~ 20-fold enrichment at CpG islands, a large fraction of which marked promoters of genes encoding DNA-binding proteins. The tumour tissues were characterised by a 5-10 bp decrease in the average distance between nucleosomes (nucleosome repeat length, NRL), which is qualitatively similar to the differences between pluripotent and differentiated cells. This effect was correlated with gene activity, differential DNA methylation and changes in local occupancy of linker histone variants H1.4 and H1X. CONCLUSIONS: Our study offers a novel resource of high-resolution nucleosome maps in breast cancer patients and reports for the first time the effect of systematic decrease of NRL in paired tumour versus normal breast tissues from the same patient. Our findings provide a new mechanistic understanding of nucleosome repositioning in tumour tissues that can be valuable for patient diagnostics, stratification and monitoring.


Assuntos
Neoplasias da Mama , Ácidos Nucleicos Livres , Humanos , Feminino , Nucleossomos/genética , Neoplasias da Mama/genética , Metilação de DNA , Histonas/genética , Histonas/metabolismo , DNA/metabolismo , Ácidos Nucleicos Livres/metabolismo , Cromatina
2.
Nat Commun ; 15(1): 361, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191578

RESUMO

R-loops that accumulate at transcription sites pose a persistent threat to genome integrity. PSIP1 is a chromatin protein associated with transcriptional elongation complex, possesses histone chaperone activity, and is implicated in recruiting RNA processing and DNA repair factors to transcription sites. Here, we show that PSIP1 interacts with R-loops and other proteins involved in R-loop homeostasis, including PARP1. Genome-wide mapping of PSIP1, R-loops and γ-H2AX in PSIP1-depleted human and mouse cell lines revealed an accumulation of R-loops and DNA damage at gene promoters in the absence of PSIP1. R-loop accumulation causes local transcriptional arrest and transcription-replication conflict, leading to DNA damage. PSIP1 depletion increases 53BP1 foci and reduces RAD51 foci, suggesting altered DNA repair choice. Furthermore, PSIP1 depletion increases the sensitivity of cancer cells to PARP1 inhibitors and DNA-damaging agents that induce R-loop-induced DNA damage. These findings provide insights into the mechanism through which PSIP1 maintains genome integrity at the site of transcription.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Estruturas R-Loop , Humanos , Animais , Camundongos , Estruturas R-Loop/genética , Linhagem Celular , Dano ao DNA , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal
3.
Nat Struct Mol Biol ; 30(7): 935-947, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37308596

RESUMO

Mammalian genomes harbor abundant transposable elements (TEs) and their remnants, with numerous epigenetic repression mechanisms enacted to silence TE transcription. However, TEs are upregulated during early development, neuronal lineage, and cancers, although the epigenetic factors contributing to the transcription of TEs have yet to be fully elucidated. Here, we demonstrate that the male-specific lethal (MSL)-complex-mediated histone H4 acetylation at lysine 16 (H4K16ac) is enriched at TEs in human embryonic stem cells (hESCs) and cancer cells. This in turn activates transcription of subsets of full-length long interspersed nuclear elements (LINE1s, L1s) and endogenous retrovirus (ERV) long terminal repeats (LTRs). Furthermore, we show that the H4K16ac-marked L1 and LTR subfamilies display enhancer-like functions and are enriched in genomic locations with chromatin features associated with active enhancers. Importantly, such regions often reside at boundaries of topologically associated domains and loop with genes. CRISPR-based epigenetic perturbation and genetic deletion of L1s reveal that H4K16ac-marked L1s and LTRs regulate the expression of genes in cis. Overall, TEs enriched with H4K16ac contribute to the cis-regulatory landscape at specific genomic locations by maintaining an active chromatin landscape at TEs.


Assuntos
Elementos de DNA Transponíveis , Retrovirus Endógenos , Animais , Humanos , Masculino , Elementos de DNA Transponíveis/genética , Cromatina/genética , Sequências Reguladoras de Ácido Nucleico/genética , Retrovirus Endógenos/genética , Genômica , Mamíferos/genética
4.
Life Sci Alliance ; 6(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36854624

RESUMO

The genetic aetiology of a major fraction of patients with intellectual disability (ID) remains unknown. De novo mutations (DNMs) in protein-coding genes explain up to 40% of cases, but the potential role of regulatory DNMs is still poorly understood. We sequenced 63 whole genomes from 21 ID probands and their unaffected parents. In addition, we analysed 30 previously sequenced genomes from exome-negative ID probands. We found that regulatory DNMs were selectively enriched in fetal brain-specific enhancers as compared with adult brain enhancers. DNM-containing enhancers were associated with genes that show preferential expression in the prefrontal cortex. Furthermore, we identified recurrently mutated enhancer clusters that regulate genes involved in nervous system development (CSMD1, OLFM1, and POU3F3). Most of the DNMs from ID probands showed allele-specific enhancer activity when tested using luciferase assay. Using CRISPR-mediated mutation and editing of epigenomic marks, we show that DNMs at regulatory elements affect the expression of putative target genes. Our results, therefore, provide new evidence to indicate that DNMs in fetal brain-specific enhancers play an essential role in the aetiology of ID.


Assuntos
Deficiência Intelectual , Adulto , Humanos , Deficiência Intelectual/genética , Genes Reguladores , Alelos , Bioensaio , Mutação/genética
5.
Genome Biol ; 23(1): 54, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35164830

RESUMO

BACKGROUND: Ribosomal DNA (rDNA) displays substantial inter-individual genetic variation in human and mouse. A systematic analysis of how this variation impacts epigenetic states and expression of the rDNA has thus far not been performed. RESULTS: Using a combination of long- and short-read sequencing, we establish that 45S rDNA units in the C57BL/6J mouse strain exist as distinct genetic haplotypes that influence the epigenetic state and transcriptional output of any given unit. DNA methylation dynamics at these haplotypes are dichotomous and life-stage specific: at one haplotype, the DNA methylation state is sensitive to the in utero environment, but refractory to post-weaning influences, whereas other haplotypes entropically gain DNA methylation during aging only. On the other hand, individual rDNA units in human show limited evidence of genetic haplotypes, and hence little discernible correlation between genetic and epigenetic states. However, in both species, adjacent units show similar epigenetic profiles, and the overall epigenetic state at rDNA is strongly positively correlated with the total rDNA copy number. Analysis of different mouse inbred strains reveals that in some strains, such as 129S1/SvImJ, the rDNA copy number is only approximately 150 copies per diploid genome and DNA methylation levels are < 5%. CONCLUSIONS: Our work demonstrates that rDNA-associated genetic variation has a considerable influence on rDNA epigenetic state and consequently rRNA expression outcomes. In the future, it will be important to consider the impact of inter-individual rDNA (epi)genetic variation on mammalian phenotypes and diseases.


Assuntos
Metilação de DNA , RNA Ribossômico , Animais , DNA Ribossômico/genética , Epigênese Genética , Variação Genética , Humanos , Mamíferos/genética , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico/genética , RNA Ribossômico/metabolismo
6.
Nat Commun ; 12(1): 3127, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035299

RESUMO

Cornelia de Lange syndrome is a multisystem developmental disorder typically caused by mutations in the gene encoding the cohesin loader NIPBL. The associated phenotype is generally assumed to be the consequence of aberrant transcriptional regulation. Recently, we identified a missense mutation in BRD4 associated with a Cornelia de Lange-like syndrome that reduces BRD4 binding to acetylated histones. Here we show that, although this mutation reduces BRD4-occupancy at enhancers it does not affect transcription of the pluripotency network in mouse embryonic stem cells. Rather, it delays the cell cycle, increases DNA damage signalling, and perturbs regulation of DNA repair in mutant cells. This uncovers a role for BRD4 in DNA repair pathway choice. Furthermore, we find evidence of a similar increase in DNA damage signalling in cells derived from NIPBL-deficient individuals, suggesting that defective DNA damage signalling and repair is also a feature of typical Cornelia de Lange syndrome.


Assuntos
Dano ao DNA , Reparo do DNA , Síndrome de Cornélia de Lange/genética , Mutação , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Predisposição Genética para Doença/genética , Humanos , Camundongos , RNA-Seq/métodos , Transdução de Sinais/genética , Fatores de Transcrição/genética
8.
Mol Cell ; 71(1): 3-5, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29979967

RESUMO

Noncoding RNAs (ncRNAs) transcribed from active enhancers are known as enhancer RNAs (eRNAs). eRNAs have generally been shown to contribute to transcriptional activation of target genes in cis. In this issue, Tsai et al. (2018) demonstrate that an eRNA expressed from a distal enhancer of Myogenic differentiation1 (MyoD) (DRReRNA) does not regulate its neighboring MyoD; instead, it promotes myogenic differentiation by activating Myogenin, which is located on a different chromosome.


Assuntos
Miogenina , RNA , Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Elementos Facilitadores Genéticos , Coesinas
9.
Nat Genet ; 50(5): 767, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29440723

RESUMO

In the version of this article initially published, Wendy Bickmore and Madapura Pradeepa were incorrectly not indicated as corresponding authors. The error has been corrected in the HTML and PDF versions of the paper.

10.
Nat Genet ; 50(3): 329-332, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29379197

RESUMO

We found that the clinical phenotype associated with BRD4 haploinsufficiency overlapped with that of Cornelia de Lange syndrome (CdLS), which is most often caused by mutation of NIPBL. More typical CdLS was observed with a de novo BRD4 missense variant, which retained the ability to coimmunoprecipitate with NIPBL, but bound poorly to acetylated histones. BRD4 and NIPBL displayed correlated binding at super-enhancers and appeared to co-regulate developmental gene expression.


Assuntos
Síndrome de Cornélia de Lange/genética , Mutação de Sentido Incorreto , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação/genética , Proteínas de Ciclo Celular , Células Cultivadas , Criança , Pré-Escolar , Elementos Facilitadores Genéticos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Haploinsuficiência , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Linhagem , Fenótipo , Ligação Proteica
11.
Genome Res ; 27(12): 1974-1987, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29133310

RESUMO

Sex chromosomes differentiated from different ancestral autosomes in various vertebrate lineages. Here, we trace the functional evolution of the XY Chromosomes of the green anole lizard (Anolis carolinensis), on the basis of extensive high-throughput genome, transcriptome and histone modification sequencing data and revisit dosage compensation evolution in representative mammals and birds with substantial new expression data. Our analyses show that Anolis sex chromosomes represent an ancient XY system that originated at least ≈160 million years ago in the ancestor of Iguania lizards, shortly after the separation from the snake lineage. The age of this system approximately coincides with the ages of the avian and two mammalian sex chromosomes systems. To compensate for the almost complete Y Chromosome degeneration, X-linked genes have become twofold up-regulated, restoring ancestral expression levels. The highly efficient dosage compensation mechanism of Anolis represents the only vertebrate case identified so far to fully support Ohno's original dosage compensation hypothesis. Further analyses reveal that X up-regulation occurs only in males and is mediated by a male-specific chromatin machinery that leads to global hyperacetylation of histone H4 at lysine 16 specifically on the X Chromosome. The green anole dosage compensation mechanism is highly reminiscent of that of the fruit fly, Drosophila melanogaster Altogether, our work unveils the convergent emergence of a Drosophila-like dosage compensation mechanism in an ancient reptilian sex chromosome system and highlights that the evolutionary pressures imposed by sex chromosome dosage reductions in different amniotes were resolved in fundamentally different ways.


Assuntos
Mecanismo Genético de Compensação de Dose , Drosophila/genética , Evolução Molecular , Lagartos/genética , Animais , Epigênese Genética , Feminino , Genoma , Humanos , Masculino , Processos de Determinação Sexual , Transcriptoma , Cromossomo X , Cromossomo Y
12.
PLoS Genet ; 13(4): e1006677, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28384324

RESUMO

Long noncoding RNAs (lncRNAs) have been implicated in various biological functions including the regulation of gene expression, however, the functionality of lncRNAs is not clearly understood and conflicting conclusions have often been reached when comparing different methods to investigate them. Moreover, little is known about the upstream regulation of lncRNAs. Here we show that the short isoform (p52) of a transcriptional co-activator-PC4 and SF2 interacting protein (Psip1), which is known to be involved in linking transcription to RNA processing, specifically regulates the expression of the lncRNA Hottip-located at the 5' end of the Hoxa locus. Using both knockdown and knockout approaches we show that Hottip expression is required for activation of the 5' Hoxa genes (Hoxa13 and Hoxa10/11) and for retaining Mll1 at the 5' end of Hoxa. Moreover, we demonstrate that artificially inducing Hottip expression is sufficient to activate the 5' Hoxa genes and that Hottip RNA binds to the 5' end of Hoxa. By engineering premature transcription termination, we show that it is the Hottip lncRNA molecule itself, not just Hottip transcription that is required to maintains active expression of posterior Hox genes. Our data show a direct role for a lncRNA molecule in regulating the expression of developmentally-regulated mRNA genes in cis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Homeodomínio/genética , RNA Longo não Codificante/genética , Fatores de Transcrição/genética , Transcrição Gênica , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proliferação de Células/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Proteínas Homeobox A10 , Humanos , Processamento Pós-Transcricional do RNA/genética , RNA Longo não Codificante/biossíntese , Fatores de Transcrição/biossíntese
13.
Wellcome Open Res ; 2: 83, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-34541330

RESUMO

Background: Trimethylation at histone H3 at lysine 36 (H3K36me3) is associated with expressed gene bodies and recruit proteins implicated in transcription, splicing and DNA repair. PC4 and SF2 interacting protein ( PSIP1/LEDGF) is a transcriptional coactivator, possesses a  H3K36me3 reader PWWP domain. Alternatively spliced isoforms of PSIP1 binds to H3K36me3 and suggested to function as adaptor proteins to recruit transcriptional modulators, splicing factors and proteins that promote homology directed repair (HDR), to H3K36me3 chromatin. Methods: We performed chromatin immunoprecipitation of H3K36me3 followed by quantitative mass spectrometry to identify proteins associated with H3K36 trimethylated chromatin in mouse embryonic stem cells (mESCs). Furthermore, we performed stable isotope labelling with amino acids in cell culture (SILAC) for a longer isoform of PSIP1 (p75) and MOF/KAT8 in mESCs and mouse embryonic fibroblasts (MEFS). Results: Proteomic analysis of H3K36me3 chromatin show association of proteins involved in transcriptional elongation, RNA processing and DNA repair with H3K36me3 chromatin. Furthermore, we show DNA repair proteins like PARP1, gamma H2A.X, XRCC1, DNA ligase 3, SPT16, Topoisomerases and BAZ1B are predominant interacting partners of PSIP1/p75. We validated the association of PSIP1/p75 with gamma H2A.X, an early marker of DNA damage and also demonstrated accumulation of damaged DNA in PSIP1 knockout MEFs. Conclusions: In contrast to the previously demonstrated role of H3K36me3 and PSIP1/p75 in promoting HDR in mammals, our data supports the wider role of H3K36me3 and PSIP1 in maintaining the genome integrity by recruiting several DNA repair proteins to transcribed gene bodies.

14.
Transcription ; 8(1): 40-47, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27792455

RESUMO

Enhancers control development and cellular function by spatiotemporal regulation of gene expression. Co-occurrence of acetylation of histone H3 at lysine 27 (H3K27ac) and mono methylation of histone H3 at lysine 4 (H3K4me1) has been widely used for identification of active enhancers. However, increasing evidence suggests that using this combination of marks alone for enhancer identification gives an incomplete picture of the active enhancer repertoire. We have shown that the H3 globular domain acetylations, H3K64ac and H3K122ac, and an H4 tail acetylation, H4K16ac, are enriched at active enhancers together with H3K27ac, and also at a large number of enhancers without detectable H3K27ac. We propose that acetylations at these lysine residues of histones H3 and H4 might function by directly affecting chromatin structure, nucleosome-nucleosome interactions, nucleosome stability, and transcription factor accessibility.


Assuntos
DNA/metabolismo , Elementos Facilitadores Genéticos , Histonas/metabolismo , Acetilação , DNA/química , Metilação de DNA , Histonas/química , Lisina/química , Fatores de Transcrição/metabolismo
15.
Nat Genet ; 48(6): 681-6, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27089178

RESUMO

Histone acetylation is generally associated with active chromatin, but most studies have focused on the acetylation of histone tails. Various histone H3 and H4 tail acetylations mark the promoters of active genes. These modifications include acetylation of histone H3 at lysine 27 (H3K27ac), which blocks Polycomb-mediated trimethylation of H3K27 (H3K27me3). H3K27ac is also widely used to identify active enhancers, and the assumption has been that profiling H3K27ac is a comprehensive way of cataloguing the set of active enhancers in mammalian cell types. Here we show that acetylation of lysine residues in the globular domain of histone H3 (lysine 64 (H3K64ac) and lysine 122 (H3K122ac)) marks active gene promoters and also a subset of active enhancers. Moreover, we find a new class of active functional enhancers that is marked by H3K122ac but lacks H3K27ac. This work suggests that, to identify enhancers, a more comprehensive analysis of histone acetylation is required than has previously been considered.


Assuntos
Elementos Facilitadores Genéticos , Histonas/metabolismo , Acetilação , Imunoprecipitação da Cromatina , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica , Histonas/química , Humanos , Células K562 , Lisina/metabolismo
16.
PLoS Biol ; 14(3): e1002364, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26938778

RESUMO

In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN) signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance. By performing an integrative, systematic, global analysis of RNA turnover utilizing 4-thiouridine labeling of newly transcribed RNA and pri/pre-miRNA in IFN-activated macrophages, we identify a new post-transcriptional viral defense mechanism mediated by miR-342-5p. On the basis of ChIP and site-directed promoter mutagenesis experiments, we find the synthesis of miR-342-5p is coupled to the antiviral IFN response via the IFN-induced transcription factor, IRF1. Strikingly, we find miR-342-5p targets mevalonate-sterol biosynthesis using a multihit mechanism suppressing the pathway at different functional levels: transcriptionally via SREBF2, post-transcriptionally via miR-33, and enzymatically via IDI1 and SC4MOL. Mass spectrometry-based lipidomics and enzymatic assays demonstrate the targeting mechanisms reduce intermediate sterol pathway metabolites and total cholesterol in macrophages. These results reveal a previously unrecognized mechanism by which IFN regulates the sterol pathway. The sterol pathway is known to be an integral part of the macrophage IFN antiviral response, and we show that miR-342-5p exerts broad antiviral effects against multiple, unrelated pathogenic viruses such Cytomegalovirus and Influenza A (H1N1). Metabolic rescue experiments confirm the specificity of these effects and demonstrate that unrelated viruses have differential mevalonate and sterol pathway requirements for their replication. This study, therefore, advances the general concept of broad antiviral defense through multihit targeting of a single host pathway.


Assuntos
Fator Regulador 1 de Interferon/metabolismo , Interferons/fisiologia , MicroRNAs/metabolismo , Esteróis/biossíntese , Viroses/imunologia , Animais , Camundongos Endogâmicos C57BL
17.
Genes Dev ; 29(18): 1897-902, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26385961

RESUMO

Polycomb-repressive complex 1 (PRC1) and PRC2 maintain repression at many developmental genes in mouse embryonic stem cells and are required for early development. However, it is still unclear how they are targeted and how they function. We show that the ability of RING1B, a core component of PRC1, to ubiquitinate histone H2A is dispensable for early mouse embryonic development and much of the gene repression activity of PRC1. Our data support a model in which PRC1 and PRC2 reinforce each other's binding but suggest that the key functions of PRC1 lie beyond the enzymatic capabilities of RING1B.


Assuntos
Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/enzimologia , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas/enzimologia , Mutação , Complexo Repressor Polycomb 2/metabolismo , Ligação Proteica , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
18.
Nucleic Acids Res ; 42(14): 9021-32, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25056311

RESUMO

Trithorax and polycomb group proteins are generally thought to antagonize one another. The trithorax family member MLL (myeloid/lymphoid or mixed-lineage leukemia) is presumed to activate Hox expression, counteracting polycomb-mediated repression. PC4 and SF2 interacting protein 1 (PSIP1)/p75, also known as LEDGF, whose PWWP domain binds to H3K36me3, interacts with MLL and tethers MLL fusion proteins to HOXA9 in leukaemias. Here we show, unexpectedly, that Psip1/p75 regulates homeotic genes by recruiting not only MLL complexes, but also the polycomb group protein Bmi1. In Psip1(-/-) cells binding of Mll1/2, Bmi1 and the co-repressor Ctbp1 at Hox loci are all abrogated and Hoxa and Hoxd mRNA expression increased. Our data not only reveal a potential mechanism of action for Psip1 in the regulation of Hox genes but also suggest an unexpected interplay between proteins usually considered as transcriptional activators and repressors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Regulação da Expressão Gênica , Genes Homeobox , Histona-Lisina N-Metiltransferase/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Oxirredutases do Álcool/metabolismo , Animais , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
19.
Genome Res ; 23(12): 2053-65, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23990607

RESUMO

Compared with histone H3, acetylation of H4 tails has not been well studied, especially in mammalian cells. Yet, H4K16 acetylation is of particular interest because of its ability to decompact nucleosomes in vitro and its involvement in dosage compensation in flies. Here we show that, surprisingly, loss of H4K16 acetylation does not alter higher-order chromatin compaction in vivo in mouse embryonic stem cells (ESCs). As well as peaks of acetylated H4K16 and KAT8 histone acetyltransferase at the transcription start sites of expressed genes, we report that acetylation of H4K16 is a new marker of active enhancers in ESCs and that some enhancers are marked by H3K4me1, KAT8, and H4K16ac, but not by acetylated H3K27 or EP300, suggesting that they are novel EP300 independent regulatory elements. Our data suggest a broad role for different histone acetylation marks and for different histone acetyltransferases in long-range gene regulation.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Proteína p300 Associada a E1A/metabolismo , Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Acetilação , Animais , Células Cultivadas , Mecanismo Genético de Compensação de Dose , Epigênese Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Histona Acetiltransferases/genética , Hibridização in Situ Fluorescente , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Sítio de Iniciação de Transcrição
20.
PLoS Genet ; 8(5): e1002717, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615581

RESUMO

Increasing evidence suggests that chromatin modifications have important roles in modulating constitutive or alternative splicing. Here we demonstrate that the PWWP domain of the chromatin-associated protein Psip1/Ledgf can specifically recognize tri-methylated H3K36 and that, like this histone modification, the Psip1 short (p52) isoform is enriched at active genes. We show that the p52, but not the long (p75), isoform of Psip1 co-localizes and interacts with Srsf1 and other proteins involved in mRNA processing. The level of H3K36me3 associated Srsf1 is reduced in Psip1 mutant cells and alternative splicing of specific genes is affected. Moreover, we show altered Srsf1 distribution around the alternatively spliced exons of these genes in Psip1 null cells. We propose that Psip1/p52, through its binding to both chromatin and splicing factors, might act to modulate splicing.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Processamento Alternativo/genética , Histonas , Isoformas de Proteínas , Fatores de Transcrição/genética , Células 3T3 , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Cromatina/genética , Cromatina/metabolismo , Fibroblastos/citologia , Regulação da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Metilação , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Processamento de Serina-Arginina , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA