Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant J ; 119(2): 762-782, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38722594

RESUMO

Brassica carinata (BBCC) commonly referred to as Ethiopian mustard is a natural allotetraploid containing the genomes of Brassica nigra (BB) and Brassica oleracea (CC). It is an oilseed crop endemic to the northeastern regions of Africa. Although it is under limited cultivation, B. carinata is valuable as it is resistant/highly tolerant to most of the pathogens affecting widely cultivated Brassica species of the U's triangle. We report a chromosome-scale genome assembly of B. carinata accession HC20 using long-read Oxford Nanopore sequencing and Bionano optical maps. The assembly has a scaffold N50 of ~39.8 Mb and covers ~1.11 Gb of the genome. We compared the long-read genome assemblies of the U's triangle species and found extensive gene collinearity between the diploids and allopolyploids with no evidence of major gene losses. Therefore, B. juncea (AABB), B. napus (AACC), and B. carinata can be regarded as strict allopolyploids. We cataloged the nucleotide-binding and leucine-rich repeat immune receptor (NLR) repertoire of B. carinata and, identified 465 NLRs, and compared these with the NLRs in the other Brassica species. We investigated the extent and nature of early-generation genomic interactions between the constituent genomes of B. carinata and B. juncea in interspecific crosses between the two species. Besides the expected recombination between the constituent B genomes, extensive homoeologous exchanges were observed between the A and C genomes. Interspecific crosses, therefore, can be used for transferring disease resistance from B. carinata to B. juncea and broadening the genetic base of the two allotetraploid species.


Assuntos
Brassica , Cromossomos de Plantas , Resistência à Doença , Genoma de Planta , Mostardeira , Doenças das Plantas , Resistência à Doença/genética , Mostardeira/genética , Mostardeira/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Genoma de Planta/genética , Brassica/genética , Brassica/microbiologia , Cromossomos de Plantas/genética , Introgressão Genética , Poliploidia
2.
Plant Biotechnol J ; 21(11): 2182-2195, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37539488

RESUMO

Glucosinolate content in the two major oilseed Brassica crops-rapeseed and mustard has been reduced to the globally accepted Canola quality level (<30 µmoles/g of seed dry weight, DW), making the protein-rich seed meal useful as animal feed. However, the overall lower glucosinolate content in seeds as well as in the other parts of such plants renders them vulnerable to biotic challenges. We report CRISPR/Cas9-based editing of glucosinolate transporter (GTR) family genes in mustard (Brassica juncea) to develop ideal lines with the desired low seed glucosinolate content (SGC) while maintaining high glucosinolate levels in the other plant parts for uncompromised plant defence. Use of three gRNAs provided highly efficient and precise editing of four BjuGTR1 and six BjuGTR2 homologues leading to a reduction of SGC from 146.09 µmoles/g DW to as low as 6.21 µmoles/g DW. Detailed analysis of the GTR-edited lines showed higher accumulation and distributional changes of glucosinolates in the foliar parts. However, the changes did not affect the plant defence and yield parameters. When tested against the pathogen Sclerotinia sclerotiorum and generalist pest Spodoptera litura, the GTR-edited lines displayed a defence response at par or better than that of the wild-type line. The GTR-edited lines were equivalent to the wild-type line for various seed yield and seed quality traits. Our results demonstrate that simultaneous editing of multiple GTR1 and GTR2 homologues in mustard can provide the desired low-seed, high-leaf glucosinolate lines with an uncompromised defence and yield.


Assuntos
Brassica napus , Mostardeira , Animais , Mostardeira/genética , Glucosinolatos , Brassica napus/genética , Sementes/genética , Folhas de Planta/genética , Folhas de Planta/química
3.
Theor Appl Genet ; 136(4): 96, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37017803

RESUMO

KEY MESSAGE: Genetic mapping of some key plant architectural traits in a vegetable type and an oleiferous B. juncea cross revealed QTL and candidate genes for breeding more productive ideotypes. Brassica juncea (AABB, 2n = 36), commonly called mustard, is an allopolyploid crop of recent origin but contains considerable morphological and genetic variation. An F1-derived doubled haploid population developed from a cross between an Indian oleiferous line, Varuna, and a Chinese stem type vegetable mustard, Tumida showed significant variability for some key plant architectural traits-four stem strength-related traits, stem diameter (Dia), plant height (Plht), branch initiation height (Bih), number of primary branches (Pbr), and days to flowering (Df). Multi-environment QTL analysis identified twenty Stable QTL for the above-mentioned nine plant architectural traits. Though Tumida is ill-adapted to the Indian growing conditions, it was found to contribute favorable alleles in Stable QTL for five architectural traits-press force, Dia, Plht, Bih, and Pbr; these QTL could be used to breed superior ideotypes in the oleiferous mustard lines. A QTL cluster on LG A10 contained Stable QTL for seven architectural traits that included major QTL (phenotypic variance ≥ 10%) for Df and Pbr, with Tumida contributing the trait-enhancing alleles for both. Since early flowering is critical for the cultivation of mustard in the Indian subcontinent, this QTL cannot be used for the improvement of Pbr in the Indian gene pool lines. Conditional QTL analysis for Pbr, however, identified other QTL which could be used for the improvement of Pbr without affecting Df. The Stable QTL intervals were mapped on the genome assemblies of Tumida and Varuna for the identification of candidate genes.


Assuntos
Brassica , Melhoramento Vegetal , Haploidia , Brassica/anatomia & histologia , Brassica/genética , Verduras/genética , Locos de Características Quantitativas , Fenótipo , Caules de Planta , Brotos de Planta , Flores
4.
Plant Mol Biol ; 110(1-2): 161-186, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35831732

RESUMO

Cryptochrome 2 (CRY2) perceives blue/UV-A light and regulates photomorphogenesis in plants. However, besides Arabidopsis, CRY2 has been functionally characterized only in native species of japonica rice and tomato. In the present study, the BnCRY2a, generating a relatively longer cDNA and harboring an intron in its 5'UTR, has been characterized in detail. Western blot analysis revealed that BnCRY2a is light labile and degraded rapidly by 26S proteasome when seedlings are irradiated with blue light. For functional analysis, BnCRY2a was over-expressed in Brassica juncea, a related species more amenable to transformation. The BnCRY2a over-expression (BnCRY2aOE) transgenics developed short hypocotyl and expanded cotyledons, accumulated more anthocyanin in light-grown seedlings, and displayed early flowering on maturity. Early flowering in BnCRY2aOE transgenics was coupled with the up-regulation of many flowering-related genes such as FT. The present study also highlights the differential light sensitivity of cry1 and cry2 in controlling hypocotyl elongation growth in Brassica. BnCRY2aOE seedlings developed much shorter hypocotyl under the low-intensity of blue light, while BnCRY1OE seedling hypocotyls were shorter under the high-intensity blue light, compared to untransformed seedlings.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Criptocromos/genética , Criptocromos/metabolismo , Hipocótilo/genética , Luz , Plântula/genética , Plântula/metabolismo
5.
Front Genet ; 13: 814486, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281836

RESUMO

Seed size/weight is a multigenic trait that is governed by complex transcriptional regulatory pathways. An understanding of the genetic basis of seed size is of great interest in the improvement of seed yield and quality in oilseed crops. A global transcriptome analysis was performed at the initial stages of seed development in two lines of Brassica juncea, small-seeded EH-2 and large-seeded PJ. The anatomical analyses revealed significant differences in cell number and cell size in the outer layer of the seed coat between EH-2 and PJ. Pairwise comparisons at each developmental stage identified 5,974 differentially expressed genes (DEGs) between the two lines, of which 954 genes belong to different families of transcription factors. Two modules were found to be significantly correlated with an increased seed size using weighted gene coexpression network analysis. The DEG and coexpression datasets were integrated with the thousand seed weight (Tsw) quantitative trait loci (QTL) mapped earlier in the EPJ (EH-2 × PJ) doubled haploid (DH) population, which identified forty potential key components controlling seed size. The candidate genes included genes regulating the cell cycle, cell wall biogenesis/modification, solute/sugar transport, and hormone signaling. The results provide a valuable resource to widen the current understanding of regulatory mechanisms underlying seed size in B. juncea.

6.
Front Plant Sci ; 12: 721631, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603351

RESUMO

The exploitation of heterosis through hybrid breeding is one of the major breeding objectives for productivity increase in crop plants. This research analyzes the genetic basis of heterosis in Brassica juncea by using a doubled haploid (DH) mapping population derived from F1 between two heterotic inbred parents, one belonging to the Indian and the other belonging to the east European gene pool, and their two corresponding sets of backcross hybrids. An Illumina Infinium Brassica 90K SNP array-based genetic map was used to identify yield influencing quantitative trait loci (QTL) related to plant architecture, flowering, and silique- and seed-related traits using five different data sets from multiple trials, allowing the estimation of additive and dominance effects, as well as digenic epistatic interactions. In total, 695 additive QTL were detected for the 14 traits in the three trials using five data sets, with overdominance observed to be the predominant type of effect in determining the expression of heterotic QTL. The results indicated that the design in the present study was efficient for identifying common QTL across multiple trials and populations, which constitute a valuable resource for marker-assisted selection and further research. In addition, a total of 637 epistatic loci were identified, and it was concluded that epistasis among loci without detectable main effects plays an important role in controlling heterosis in yield of B. juncea.

7.
Food Chem ; 354: 129527, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-33756325

RESUMO

The globally cultivated Brassica crops contain high deliverable concentrations of health-promoting glucosinolates. Development of a Visible-Near InfraRed Spectroscopy (Vis-NIRS) calibration to profile different glucosinolate components from 641 diverse Brassica juncea chemotypes was attempted in this study. Principal component analysis of HPLC-determined glucosinolates established the distinctiveness of four B. juncea populations used. Subsequently, modified partial least square regression based population-specific and combined Vis-NIRS models were developed, wherein the combined model exhibited higher coefficient of determination (R2; 0.81-0.97) for eight glucosinolates and higher ratio of prediction determination (RPD; 2.42-5.35) for seven glucosinolates in B. juncea populations. Furthermore, range error ratio (RER > 4) for twelve and RER > 10 for eight glucosinolates make the combined model acceptable for screening and quality control. The model also provided excellent prediction for aliphatic glucosinolates in four oilseed Brassica species. Overall, our work highlights the potential of Vis-NIR spectroscopy in estimating glucosinolate content in the economically important Brassica oilseeds.


Assuntos
Glucosinolatos/análise , Mostardeira/química , Espectroscopia de Luz Próxima ao Infravermelho , Sementes/química , Fatores de Tempo
8.
Prostaglandins Other Lipid Mediat ; 153: 106536, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33556577

RESUMO

BACKGROUND: Coronary artery disease (CAD) and stroke are major causes of cardiovascular diseases related deaths. Conventional risk factors cannot explain the changes in atherosclerosis. New and useful diagnostic markers are required. MicroRNAs are small, noncoding RNA that regulate the gene expression implicated in the pathogenesis of various cardiovascular diseases. Endothelial dysfunction is involved in the early event of the atherosclerosis process. AIMS: The current study was designed to evaluate the vascular endothelium-enriched miRNAs would be altered in CAD patients. METHODS: Circulating miR-126 & 122 levels were measured in serum from 78 CAD patients and 60 non CDA patients by qRT-PCR analysis. RESULTS: MiR-122 was significantly down regulated in CAD patients (p = 0.001), however the level of miR-126 did not show any change (p = 0.507). Remarkably, the level of miR-126 was significantly decreased in patients with CAD and high small dense low density lipoprotein (sdLDL) level. The level of miR-126 was significantly increased when sdLDL was higher in patients with risk factors for CAD but did not have angiographically significant CAD. CONCLUSION: . In CAD patient's, miR-126 level was lowered compared to non CAD patients, however the difference was not significant (0.507). However we found a direct relationship between endothelium-enriched miR-126 and sdLDL in patients with or without CAD. Our finding suggests that miR-126 may have a potential role in sdLDL cholesterol metabolism. Mir-122 plays a role in cholesterol biosynthesis and deteriorates the cardiovascular system through the process of inflammation, apoptosis, oxidative stress and ECM deposition in a number of cardiovascular diseases.


Assuntos
Doença da Artéria Coronariana , LDL-Colesterol , MicroRNA Circulante , Humanos , Pessoa de Meia-Idade
9.
Plant Biotechnol J ; 19(3): 602-614, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33073461

RESUMO

Brassica juncea (AABB), commonly referred to as mustard, is a natural allopolyploid of two diploid species-B. rapa (AA) and B. nigra (BB). We report a highly contiguous genome assembly of an oleiferous type of B. juncea variety Varuna, an archetypical Indian gene pool line of mustard, with ~100× PacBio single-molecule real-time (SMRT) long reads providing contigs with an N50 value of >5 Mb. Contigs were corrected for the misassemblies and scaffolded with BioNano optical mapping. We also assembled a draft genome of B. nigra (BB) variety Sangam using Illumina short-read sequencing and Oxford Nanopore long reads and used it to validate the assembly of the B genome of B. juncea. Two different linkage maps of B. juncea, containing a large number of genotyping-by-sequencing markers, were developed and used to anchor scaffolds/contigs to the 18 linkage groups of the species. The resulting chromosome-scale assembly of B. juncea Varuna is a significant improvement over the previous draft assembly of B. juncea Tumida, a vegetable type of mustard. The assembled genome was characterized for transposons, centromeric repeats, gene content and gene block associations. In comparison to the A genome, the B genome contains a significantly higher content of LTR/Gypsy retrotransposons, distinct centromeric repeats and a large number of B. nigra specific gene clusters that break the gene collinearity between the A and the B genomes. The B. juncea Varuna assembly will be of major value to the breeding work on oleiferous types of mustard that are grown extensively in south Asia and elsewhere.


Assuntos
Genoma de Planta , Mostardeira , Ásia , Mapeamento Cromossômico , Cromossomos , Genoma de Planta/genética , Mostardeira/genética , Melhoramento Vegetal
10.
BMC Genomics ; 21(1): 887, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33308149

RESUMO

BACKGROUND: Brassica nigra (BB), also called black mustard, is grown as a condiment crop in India. B. nigra represents the B genome of U's triangle and is one of the progenitor species of B. juncea (AABB), an important oilseed crop of the Indian subcontinent. We report the genome assembly of B. nigra variety Sangam. RESULTS: The genome assembly was carried out using Oxford Nanopore long-read sequencing and optical mapping. A total of 1549 contigs were assembled, which covered ~ 515.4 Mb of the estimated ~ 522 Mb of the genome. The final assembly consisted of 15 scaffolds that were assigned to eight pseudochromosomes using a high-density genetic map of B. nigra. Around 246 Mb of the genome consisted of the repeat elements; LTR/Gypsy types of retrotransposons being the most predominant. The B genome-specific repeats were identified in the centromeric regions of the B. nigra pseudochromosomes. A total of 57,249 protein-coding genes were identified of which 42,444 genes were found to be expressed in the transcriptome analysis. A comparison of the B genomes of B. nigra and B. juncea revealed high gene colinearity and similar gene block arrangements. A comparison of the structure of the A, B, and C genomes of U's triangle showed the B genome to be divergent from the A and C genomes for gene block arrangements and centromeric regions. CONCLUSIONS: A highly contiguous genome assembly of the B. nigra genome reported here is an improvement over the previous short-read assemblies and has allowed a comparative structural analysis of the A, B, and C genomes of the species belonging to the U's triangle. Based on the comparison, we propose a new nomenclature for B. nigra pseudochromosomes, taking the B. rapa pseudochromosome nomenclature as the reference.


Assuntos
Genoma de Planta , Mostardeira , Mapeamento Cromossômico , Índia , Mostardeira/genética , Retroelementos
11.
Plant J ; 103(5): 1885-1893, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32530074

RESUMO

The development of more productive crops will be key to addressing the challenges that climate change, population growth and diminishing resources pose to global food security. Advanced 'omics techniques can help to accelerate breeding by facilitating the identification of genetic markers for use in marker-assisted selection. Here, we present the validation of a new Associative Transcriptomics platform in the important oilseed crop Brassica juncea. To develop this platform, we established a pan-transcriptome reference for B. juncea, to which we mapped transcriptome data from a diverse panel of B. juncea accessions. From this panel, we identified 355 050 single nucleotide polymorphism variants and quantified the abundance of 93 963 transcripts. Subsequent association analysis of functional genotypes against a number of important agronomic and quality traits revealed a promising candidate gene for seed weight, BjA.TTL, as well as additional markers linked to seed colour and vitamin E content. The establishment of the first full-scale Associative Transcriptomics platform for B. juncea enables rapid progress to be made towards an understanding of the genetic architecture of trait variation in this important species, and provides an exemplar for other crops.


Assuntos
Produção Agrícola/métodos , Mostardeira/genética , Poliploidia , Característica Quantitativa Herdável , Transcriptoma/genética , Perfilação da Expressão Gênica , Genes de Plantas/genética , Estudos de Associação Genética , Marcadores Genéticos/genética , Mostardeira/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único/genética , Sementes/crescimento & desenvolvimento
12.
Theor Appl Genet ; 132(8): 2223-2236, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31049632

RESUMO

KEY MESSAGE: BjuWRR1, a CNL-type R gene, was identified from an east European gene pool line of Brassica juncea and validated for conferring resistance to white rust by genetic transformation. White rust caused by the oomycete pathogen Albugo candida is a significant disease of crucifer crops including Brassica juncea (mustard), a major oilseed crop of the Indian subcontinent. Earlier, a resistance-conferring locus named AcB1-A5.1 was mapped in an east European gene pool line of B. juncea-Donskaja-IV. This line was tested along with some other lines of B. juncea (AABB), B. rapa (AA) and B. nigra (BB) for resistance to six isolates of A. candida collected from different mustard growing regions of India. Donskaja-IV was found to be completely resistant to all the tested isolates. Sequencing of a BAC spanning the locus AcB1-A5.1 showed the presence of a single CC-NB-LRR protein encoding R gene. The genomic sequence of the putative R gene with its native promoter and terminator was used for the genetic transformation of a susceptible Indian gene pool line Varuna and was found to confer complete resistance to all the isolates. This is the first white rust resistance-conferring gene described from Brassica species and has been named BjuWRR1. Allelic variants of the gene in B. juncea germplasm and orthologues in the Brassicaceae genomes were studied to understand the evolutionary dynamics of the BjuWRR1 gene.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Mostardeira/genética , Mostardeira/microbiologia , Oomicetos/fisiologia , Doenças das Plantas/microbiologia , Proteínas/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Marcadores Genéticos , Variação Genética , Proteínas de Repetições Ricas em Leucina , Oomicetos/isolamento & purificação , Plantas Geneticamente Modificadas , Proteínas/química , Proteínas/metabolismo , Transformação Genética
13.
Front Plant Sci ; 10: 1690, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998351

RESUMO

White rust, causal agent oomycete Albugo candida, is a significant disease of the cultivated Brassica species. The Indian gene pool lines of oilseed mustard, Brassica juncea, are highly susceptible to the pathogen. Resistance to A. candida has been reported in the east European gene pool lines of mustard and mapped to LG A4 in line Heera and LG A5 in line Donskaja-IV. A new resistance-conferring locus to A. candida isolate AcB1 has been mapped to LG A6 of B. juncea line Tumida-a Chinese vegetable type mustard using an F1DH mapping population that has been developed from a Tumida × Varuna (susceptible Indian gene pool line) cross. A molecular map containing 8,303 genic and GBS markers was used to map the resistance trait to an interval of 63.0 cM-70.8 cM on LG A6. Genome assemblies of Tumida and Varuna were used to find the genes present within the flanking markers discerned by genetic mapping. The most likely candidate gene in the mapped interval is BjuA046215, a CC-NBS-LRR (CNL) type R gene that encodes a protein with all the specific subdomains of the proteins encoded by such genes. Alleles of BjuA046215 in Varuna and other lines of the Indian and the east European gene pools encode proteins that have truncated LRR domains. Analysis of the syntenic regions in some of the Brassicaceae genomes and phylogenetic analysis of CNL type R genes showed BjuA046215 to be closely related to a recently described white rust resistance-conferring R gene BjuWRR1 in B. juncea Donskaja-IV, both belonging to the CNL-D group of R genes. Related R genes in Arabidopsis thaliana confer resistance to another oomycete, Peronospora parasitica.

14.
Front Plant Sci ; 9: 1448, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386353

RESUMO

Increasing oil content in oilseed mustard (Brassica juncea) is a major breeding objective-more so, in the lines that have "0" erucic acid content (< 2% of the seed oil) as earlier studies have shown negative pleiotropic effect of erucic acid loci on the oil content, both in oilseed mustard and rapeseed. We report here QTL analysis of oil content in eight different mapping populations involving seven different parents-including a high oil content line J8 (~49%). The parental lines of the mapping populations contained wide variation in oil content and erucic acid content. The eight mapping populations were categorized into two sets-five populations with individuals segregating for erucic acid (SE populations) and the remaining three with zero erucic acid segregants (ZE populations). Meta-analysis of QTL mapped in individual SE populations identified nine significant C-QTL, with two of these merging most of the major oil QTL that colocalized with the erucic acid loci on the linkage groups A08 and B07. QTL analysis of oil content in ZE populations revealed a change in the landscape of the oil QTL compared to the SE populations, in terms of altered allelic effects and phenotypic variance explained by ZE QTL at the "common" QTL and observation of "novel" QTL in the ZE background. The important loci contributing to oil content variation, identified in the present study could be used in the breeding programmes for increasing the oil content in high erucic and "0" erucic backgrounds.

15.
Mol Plant Pathol ; 19(7): 1719-1732, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29271603

RESUMO

Quantitative disease resistance (QDR) is the predominant form of resistance against necrotrophic pathogens. The genes and mechanisms underlying QDR are not well known. In the current study, the Arabidopsis-Alternaria brassicae pathosystem was used to uncover the genetic architecture underlying resistance to A. brassicae in a set of geographically diverse Arabidopsis accessions. Arabidopsis accessions revealed a rich variation in the host responses to the pathogen, varying from complete resistance to high susceptibility. Genome-wide association (GWA) mapping revealed multiple regions to be associated with disease resistance. A subset of genes prioritized on the basis of gene annotations and evidence of transcriptional regulation in other biotic stresses was analysed using a reverse genetics approach employing T-DNA insertion mutants. The mutants of three genes, namely At1g06990 (GDSL-motif lipase), At3g25180 (CYP82G1) and At5g37500 (GORK), displayed an enhanced susceptibility relative to the wild-type. These genes are involved in the development of morphological phenotypes (stomatal aperture) and secondary metabolite synthesis, thus defining some of the diverse facets of quantitative resistance against A. brassicae.


Assuntos
Alternaria/patogenicidade , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Doenças das Plantas/microbiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Locos de Características Quantitativas/genética
16.
PLoS One ; 12(8): e0182747, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28787461

RESUMO

Sinapine is a major anti-nutritive compound that accumulates in the seeds of Brassica species. When ingested, sinapine imparts gritty flavuor in meat and milk of animals and fishy odor to eggs of brown egg layers, thereby compromising the potential use of the valuable protein rich seed meal. Sinapine content in Brassica juncea germplasm ranges from 6.7 to 15.1 mg/g of dry seed weight (DSW) which is significantly higher than the prescribed permissible level of 3.0 mg/g of DSW. Due to limited natural genetic variability, conventional plant breeding approach for reducing the sinapine content has largely been unsuccessful. Hence, transgenic approach for gene silencing was adopted by targeting two genes-SGT and SCT, encoding enzymes UDP- glucose: sinapate glucosyltransferase and sinapoylglucose: choline sinapoyltransferase, respectively, involved in the final two steps of sinapine biosynthetic pathway. These two genes were isolated from B. juncea and eight silencing constructs were developed using three different RNA silencing approaches viz. antisense RNA, RNAi and artificial microRNA. Transgenics in B. juncea were developed following Agrobacterium-mediated transformation. From a total of 1232 independent T0 transgenic events obtained using eight silencing constructs, 25 homozygous lines showing single gene inheritance were identified in the T2 generation. Reduction of seed sinapine content in these lines ranged from 15.8% to 67.2%; the line with maximum reduction had sinapine content of 3.79 mg/g of DSW. The study also revealed that RNAi method was more efficient than the other two methods used in this study.


Assuntos
Colina/análogos & derivados , Genes de Plantas/genética , Mostardeira/genética , Mostardeira/metabolismo , Propanóis/metabolismo , Sementes/metabolismo , Colina/metabolismo , Simulação por Computador , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/química , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Homozigoto , Modelos Moleculares , Mostardeira/enzimologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Conformação Proteica
17.
Front Plant Sci ; 8: 260, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28286515

RESUMO

Alternaria brassicae, a necrotrophic fungal pathogen, causes Alternaria blight, one of the most important diseases of oleiferous Brassica crops. The current study utilized Arabidopsis as a model to decipher the genetic architecture of defense against A. brassicae. Significant phenotypic variation that was largely genetically determined was observed among Arabidopsis accessions in response to pathogen challenge. Three biparental mapping populations were developed from three resistant accessions viz. CIBC-5, Ei-2, and Cvi-0 and two susceptible accessions - Gre-0 and Zdr-1 (commonly crossed to CIBC-5 and Ei-2). A total of six quantitative trait locus (QTLs) governing resistance to A. brassicae were identified, five of which were population-specific while one QTL was common between all the three mapping populations. Interestingly, the common QTL had varying phenotypic contributions in different populations, which can be attributed to the genetic background of the parental accessions. The presence of both common and population-specific QTLs indicate that resistance to A. brassicae is quantitative, and that different genes may mediate resistance to the pathogen in different accessions. Two of the QTLs had moderate-to-large effects, one of which explained nearly 50% of the variation. The large effect QTLs may therefore contain genes that could play a significant role in conferring resistance even in heterologous hosts.

18.
Plant Biotechnol J ; 15(5): 594-604, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27808473

RESUMO

Polyploidy, the possession of multiple sets of chromosomes, has been a predominant factor in the evolution and success of the angiosperms. Although artificially formed allopolyploids show a high rate of genome rearrangement, the genomes of cultivars and germplasm used for crop breeding were assumed stable and genome structural variation under the artificial selection process of commercial breeding has remained little studied. Here, we show, using a repurposed visualization method based on transcriptome sequence data, that genome structural rearrangement occurs frequently in varieties of three polyploid crops (oilseed rape, mustard rape and bread wheat), meaning that the extent of genome structural variation present in commercial crops is much higher than expected. Exchanges were found to occur most frequently where homoeologous chromosome segments are collinear to telomeres and in material produced as doubled haploids. The new insights into genome structural evolution enable us to reinterpret the results of recent studies and implicate homoeologous exchanges, not deletions, as being responsible for variation controlling important seed quality traits in rapeseed. Having begun to identify the extent of genome structural variation in polyploid crops, we can envisage new strategies for the global challenge of broadening crop genetic diversity and accelerating adaptation, such as the molecular identification and selection of genome deletions or duplications encompassing genes with trait-controlling dosage effects.


Assuntos
Produtos Agrícolas/genética , Genoma de Planta , Poliploidia , Análise de Sequência de RNA/métodos , Brassica napus/genética , Brassica rapa/genética , Biologia Computacional/métodos , RNA Mensageiro , Triticum/genética
19.
Theor Appl Genet ; 130(2): 293-307, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27744489

RESUMO

KEY MESSAGE: Seed weight QTL identified in different populations were synthesized into consensus QTL which were shown to harbor candidate genes by in silico mapping. Allelic variation inferred would be useful in breeding B. juncea lines with high seed weight. Seed weight is an important yield influencing trait in oilseed Brassicas and is a multigenic trait. Among the oilseed Brassicas, Brassica juncea harbors the maximum phenotypic variation wherein thousand seed weight varies from around 2.0 g to more than 7.0 g. In this study, we have undertaken quantitative trait locus/quantitative trait loci (QTL) analysis of seed weight in B. juncea using four bi-parental doubled-haploid populations. These four populations were derived from six lines (three Indian and three east European lines) with parental phenotypic values for thousand seed weight ranging from 2.0 to 7.6 g in different environments. Multi-environment QTL analysis of the four populations identified a total of 65 QTL ranging from 10 to 25 in each population. Meta-analysis of these component QTL of the four populations identified six 'consensus' QTL (C-QTL) in A3, A7, A10 and B3 by merging 33 of the 65 component Tsw QTL from different bi-parental populations. Allelic diversity analysis of these six C-QTL showed that Indian lines, Pusajaikisan and Varuna, hold the most positive allele in all the six C-QTL. In silico mapping of candidate genes with the consensus QTL localized 11 genes known to influence seed weight in Arabidopsis thaliana and also showed conserved crucifer blocks harboring seed weight QTL between the A subgenomes of B. juncea and B. rapa. These findings pave the way for a better understanding of the genetics of seed weight in the oilseed crop B. juncea and reveal the scope available for improvement of seed weight through marker-assisted breeding.


Assuntos
Pool Gênico , Mostardeira/genética , Locos de Características Quantitativas , Sementes/crescimento & desenvolvimento , Alelos , Mapeamento Cromossômico , Sequência Consenso , Epistasia Genética , Genética Populacional , Haploidia , Mostardeira/crescimento & desenvolvimento , Fenótipo , Sementes/genética
20.
PLoS One ; 11(2): e0150060, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26919200

RESUMO

Among the different types of methionine-derived aliphatic glucosinolates (GS), sinigrin (2-propenyl), the final product in 3C GS biosynthetic pathway is considered very important as it has many pharmacological and therapeutic properties. In Brassica species, the candidate gene regulating synthesis of 3C GS remains ambiguous. Earlier reports of GSL-PRO, an ortholog of Arabidopsis thaliana gene At1g18500 as a probable candidate gene responsible for 3C GS biosynthesis in B. napus and B. oleracea could not be validated in B. juncea through genetic analysis. In this communication, we report the isolation and characterization of the gene CYP79F1, an ortholog of A. thaliana gene At1g16410 that is involved in the first step of core GS biosynthesis. The gene CYP79F1 in B. juncea showed presence-absence polymorphism between lines Varuna that synthesizes sinigrin and Heera virtually free from sinigrin. Using this presence-absence polymorphism, CYP79F1 was mapped to the previously mapped 3C GS QTL region (J16Gsl4) in the LG B4 of B. juncea. In Heera, the gene was observed to be truncated due to an insertion of a ~4.7 kb TE like element leading to the loss of function of the gene. Functional validation of the gene was carried out through both genetic and transgenic approaches. An F2 population segregating only for the gene CYP79F1 and the sinigrin phenotype showed perfect co-segregation. Finally, genetic transformation of a B. juncea line (QTL-NIL J16Gsl4) having high seed GS but lacking sinigrin with the wild type CYP79F1 showed the synthesis of sinigrin validating the role of CYP79F1 in regulating the synthesis of 3C GS in B. juncea.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Glucosinolatos/biossíntese , Mostardeira/genética , Proteínas de Plantas/genética , Mapeamento Cromossômico , Sistema Enzimático do Citocromo P-450/metabolismo , Genótipo , Mostardeira/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA