Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(24): 15925-15934, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38830113

RESUMO

The growth in data generation necessitates efficient data processing technologies to address the von Neumann bottleneck in conventional computer architecture. Memory-driven computing, which integrates nonvolatile memory (NVM) devices in a 3D stack, is gaining attention, with CMOS back-end-of-line (BEOL)-compatible ferroelectric (FE) diodes being ideal due to their two-terminal design and inherently selector-free nature, facilitating high-density crossbar arrays. Here, we demonstrate BEOL-compatible, high-performance FE diodes scaled to 5, 10, and 20 nm FE Al0.72Sc0.28N/Al0.64Sc0.36N films. Through interlayer (IL) engineering, we show substantial improvements in the on/off ratios (>166 times) and rectification ratios (>176 times) in these scaled devices. These characteristics also enable 5-bit multistate operation with a stable retention. We also experimentally and theoretically demonstrate the counterintuitive result that the inclusion of an IL can lead to a decrease in the ferroelectric switching voltage of the device. An in-depth analysis into the device transport mechanisms is performed, and our compact model aligns seamlessly with the experimental results. Our results suggest the possibility of using scaled AlxSc1-xN FE diodes for high-performance, low-power, embedded NVM.

2.
Sci Rep ; 13(1): 19096, 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925566

RESUMO

Ferroelectric materials exhibiting switchable and spontaneous polarization have strong potential to be utilized in various novel electronic devices. Solid solutions of different perovskite structures induce the coexistence of various phases and enhance the physical functionalities around the phase coexistence region. The construction of phase diagrams is important as they describe the material properties, which are linked to the underpinning physics determining the system. Here we present the phase diagram of (K0.5Na0.5NbO3)-(Ba0.5Sr0.5TiO3) (KNN-BST) system as a function of composition and their associated physical properties. Lead-free (1 - x)KNN-xBST (0 ≤ x ≤ 0.3) solid solution ceramics were synthesized by conventional solid-state reaction technique. The X-ray diffraction and Raman spectroscopic studies indicate composition-dependent structural phase transitions from an orthorhombic phase for x = 0 to orthorhombic + tetragonal dual-phase (for 0.025 ≤ x ≤ 0.15), then a tetragonal + cubic dual-phase (x = 0.2) and finally a cubic single phase for x ≥ 0.25 at room temperature (RT). Among these, the orthorhombic + tetragonal dual-phase system shows an enhanced value of the dielectric constant at room temperature. The phase transition temperatures, orthorhombic to tetragonal (TO-T) and tetragonal to cubic (TC), decrease with the increase in BST concentrations. The ferroelectric studies show a decrease of both 2Pr and EC values with a rise in BST concentration and x = 0.025 showed a maximum piezoelectric coefficient.

3.
ACS Omega ; 8(14): 13097-13108, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37065024

RESUMO

Lithium-sulfur (Li-S) batteries have attracted considerable interest as next-generation high-density energy storage devices. However, their practical applications are limited by rapid capacity fading when cycling cells with high mass loading levels. This could be largely attributed to the inferior electron/ion conduction and the severe shuttling effect of soluble polysulfide species. To address these issues, composites of sulfur/ferroelectric nanoparticles/ho ley graphene (S/FNPs/hG) cathodes were fabricated for high-mass-loading S cathodes. The solvent-free and binder-free procedure is enabled using holey graphene as a unique dry-pressable electrode for Li-S batteries. The unique structure of the holey graphene framework ensures fast electron and ion transport within the electrode and affords enough space to mitigate the electrode's volume expansion. Moreover, ferroelectric polarization due to FNPs within S/hG composites induces an internal electric field, which effectively reduces the undesired shuttling effect. With these advantages, the S/FNPs/hG composite cathodes exhibit sustainable and ultrahigh specific capacity up to 1409 mAh/gs for the S/BTO/hG cathode. A capacity retention value of 90% was obtained for the S/BNTFN/hG battery up to cycle 18. The high mass loading of sulfur ranging from 5.72 to 7.01 mgs/cm2 allows maximum high areal capacity up to ∼10 mAh/cm2 for the S/BTO/hG battery and superior rate capability at 0.2 and 0.5 mA/cm2. These results suggest sustainable and high-yielding Li-S batteries can be obtained for potential commercial applications.

4.
Sci Rep ; 11(1): 3149, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542285

RESUMO

Multiferroic composites are promising candidates for magnetic field sensors, next-generation low power memory and spintronic devices, as they exhibit much higher magnetoelectric (ME) coupling and coupled ordering parameters compared to the single-phase multiferroics. Hence, the 3-0 type particulate multiferroic composites having general formula (1 - Φ)[PbFe0.5Nb0.5O3]-Φ[Co0.6Zn0.4Fe1.7Mn0.3O4] (Φ = 0.0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, (1 - Φ) PFN-ΦCZFMO) were prepared using a hybrid synthesis technique. Preliminary structural and microstructural analysis were carried out using XRD and FESEM techniques, which suggest the formation of 3-0 type particulate composite without the presence of any impurity phases. The multiferroic behaviour of the composites is studied with polarization versus electric field (P-E) and magnetization versus magnetic field (M-H) characteristics at room temperature. The nature of ME coupling was investigated elaborately by employing the Landau free energy equation along with the magneto-capacitance measurement. This investigation suggests the existence of biquadratic nature of ME coupling (P2M2). The magneto-electric coupling measurement also suggests that strain mediated domain coupling between the ferroelectric and magnetic ordering is responsible for the magneto-electric behaviour. The obtained value of direct ME coefficient 26.78 mV/cm-Oe for Φ = 0.3, found to be higher than the well-known single-phase materials and polycrystalline composites.

5.
Sci Rep ; 11(1): 111, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420242

RESUMO

One of the ways to mitigate the world energy crisis is to harvest clean and green energy from waste-heat, which is abundant, ubiquitous, and free. Energy harvesting of this waste-heat is one of the most encouraging methods to capture freely accessible electrical energy. Ferroelectric materials can be used to harvest energy for low power electronic devices, as they exhibit switchable polarization, excellent piezoelectric and pyroelectric properties. The most important characteristic of ferroelectric materials, in the context of energy harvesting, is their ability to generate electric power from a time-dependent temperature change. In this work, we grew highly c-axis oriented heterostructures of BaZr0.2Ti0.8O3 (barium zirconium titanate, BZT)/Ba0.7Ca0.3TiO3 (barium calcium titanate, BCT) on SrRuO3 (strontium ruthenate, SRO) and deposited on SrTiO3 (strontium titanate, STO) single crystalline substrate using pulsed laser deposition (PLD) technique. We investigated the structural, electrical, dielectric, and pyroelectric properties of the above-mentioned fabricated heterostructures. The wide range of θ-2θ X-ray diffraction (XRD) patterns only shows (00l) reflection peaks of heterostructures and the substrate which confirmed that the films are highly c-axis oriented. We are also capable to convert the low-grade waste-heat into electrical energy by measuring various temperature-dependent ferroelectric hysteresis loops of our nanostructure films via pyroelectric Ericsson cycles and the structures show an energy conversion density ~ 10,970 kJ/m3 per cycle. These devices exhibit a large pyroelectric current density of ~ 25 mA/m2 with 11.8 °C of temperature fluctuation and the corresponding pyroelectric coefficient of 3425 µC/m2K. Our research findings suggest that these lead-free relaxor-ferroelectric heterostructures might be the potential candidates to harvest electrical energy from waste low-grade thermal energy.

6.
Nanomaterials (Basel) ; 10(10)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092147

RESUMO

Multiferroic (MF)-magnetoelectric (ME) composites, which integrate magnetic and ferroelectric materials, exhibit a higher operational temperature (above room temperature) and superior (several orders of magnitude) ME coupling when compared to single-phase multiferroic materials. Room temperature control and the switching of magnetic properties via an electric field and electrical properties by a magnetic field has motivated research towards the goal of realizing ultralow power and multifunctional nano (micro) electronic devices. Here, some of the leading applications for magnetoelectric composites are reviewed, and the mechanisms and nature of ME coupling in artificial composite systems are discussed. Ways to enhance the ME coupling and other physical properties are also demonstrated. Finally, emphasis is given to the important open questions and future directions in this field, where new breakthroughs could have a significant impact in transforming scientific discoveries to practical device applications, which can be well-controlled both magnetically and electrically.

7.
Sci Rep ; 9(1): 16809, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31728005

RESUMO

We grew lead-free BaZr0.2Ti0.8O3 (BZT)/Ba0.7Ca0.3TiO3 (BCT) epitaxial heterostructures and studied their structural, dielectric, ferroelectric and energy density characteristics. The BZT/BCT epitaxial heterostructures were grown on SrRuO3 (SRO) buffered SrTiO3 (STO) single crystal substrate by optimized pulsed laser deposition (PLD) technique. These high-quality nanostructures exhibit high dielectric permittivity (∼1300), slim electric field-dependent polarization (P-E) curve with high saturation polarization (∼100 µC/cm2) and low remnant polarization (∼20 µC/cm2) through interface engineering to develop new lead-free ferroelectric system for energy storage devices. We observe an ultrahigh discharge and charge energy densities of 42.10 and 97.13 J/cm3, respectively, with high efficiency, which might be highly promising for both high power and energy storage electrical devices.

8.
Sci Rep ; 9(1): 1685, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30737467

RESUMO

We have studied the atomic force microscopy (AFM), X-ray Bragg reflections, X-ray absorption spectra (XAS) of the Pd L-edge, Scanning electron microscopey (SEM) and Raman spectra, and direct magnetoelectric tensor of Pd-substituted lead titanate and lead zirconate-titanate. A primary aim is to determine the percentage of Pd+4 and Pd+2 substitutional at the Ti-sites (we find that it is almost fully substitutional). The atomic force microscopy data uniquely reveal a surprise: both threefold vertical (polarized out-of-plane) and fourfold in-plane domain vertices. This is discussed in terms of the general rules for Voronoi patterns (Dirichlet tessellations) in two and three dimensions. At high pressures Raman soft modes are observed, as in pure lead titanate, and X-ray diffraction (XRD) indicates a nearly second-order displacive phase transition. However, two or three transitions are involved: First, there are anomalies in c/a ratio and Raman spectra at low pressures (P = 1 - 2 GPa); and second, the c/a ratio reaches unity at ca. P = 10 GPa, where a monoclinic (Mc) but metrically cubic transition occurs from the ambient tetragonal P4 mm structure in pure PbTiO3; whereas the Raman lines (forbidden in the cubic phase) remain until ca. 17 GPa, where a monoclinic-cubic transition is known in lead titanate.

9.
J Phys Condens Matter ; 31(7): 075401, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30523956

RESUMO

Piezoelectric and other physical properties are significantly enhanced at (or near) a morphotropic phase boundary (MPB) in ferroelectrics. MPB materials have attracted significant attention owing to both fundamental physics as well as the possibility of well-regulated energy and information storage devices which are dominated by lead (Pb)-based materials. Here, we report the crystal structure, Raman spectra, dielectric constant and polarization near the MPB of lead free (1 - x) Na0.5Bi0.5TiO3 - x BaTiO3 (0.00 ⩽ x ⩽ 0.10) solid-solution, prepared by sol-gel auto combustion technique and sintered by microwave sintering technique. With the addition of BaTiO3 into Na0.5Bi0.5TiO3, it induces a structural phase transition from R3c (a single phase) to R3c + P4mm (a dual phase) close to x = 0.06 and 0.07 and transform to a high symmetry tetragonal phase P4mm at higher compositions (x = 0.08 to 0.10) as evident from our x-ray Rietveld refinement and Raman spectroscopic results. We perform first-principles calculations based on density functional theory that confirm a structural transition from a rhombohedral to a tetragonal phase under increasing x. In the prepared solid solution, an anomalous enhancement of remnant polarization ([Formula: see text]) was observed for x = 0.06 and 0.07, which has been explained based on the existence of the MPB. On the other hand, the value of coercive field [Formula: see text] was found to be decreased linearly from x = 0.00 to 0.06; it is constant for higher compositions. Further details of the ferroelectric properties on the electric field poled samples have been studied and compared with the as-grown (unpoled) samples.

10.
Sci Rep ; 8(1): 17381, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478356

RESUMO

Multiferroic materials have attracted considerable attention as possible candidates for a wide variety of future microelectronic and memory devices, although robust magnetoelectric (ME) coupling between electric and magnetic orders at room temperature still remains difficult to achieve. In order to obtain robust ME coupling at room temperature, we studied the Pb(Fe0.5Nb0.5)O3/Ni0.65Zn0.35Fe2O4/Pb(Fe0.5Nb0.5)O3 (PFN/NZFO/PFN) trilayer structure as a representative FE/FM/FE system. We report the ferroelectric, magnetic and ME properties of PFN/NZFO/PFN trilayer nanoscale heterostructure having dimensions 70/20/70 nm, at room temperature. The presence of only (00l) reflection of PFN and NZFO in the X-ray diffraction (XRD) patterns and electron diffraction patterns in Transmission Electron Microscopy (TEM) confirm the epitaxial growth of multilayer heterostructure. The distribution of the ferroelectric loop area in a wide area has been studied, suggesting that spatial variability of ferroelectric switching behavior is low, and film growth is of high quality. The ferroelectric and magnetic phase transitions of these heterostructures have been found at ~575 K and ~650 K, respectively which are well above room temperature. These nanostructures exhibit low loss tangent, large saturation polarization (Ps ~ 38 µC/cm2) and magnetization (Ms ~ 48 emu/cm3) with strong ME coupling at room temperature revealing them as potential candidates for nanoscale multifunctional and spintronics device applications.

11.
Phys Chem Chem Phys ; 19(1): 210-218, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27901150

RESUMO

Multiferroic composite structures, i.e., composites of magnetostrictive and piezoelectric materials, can be envisioned to achieve the goal of strong room-temperature ME coupling for real practical device applications. Magnetic materials with high magnetostriction, high Néel temperature (TN), high resistivity and large magnetization are required to observe high ME coupling in composite structures. In continuation of our investigations on suitable magnetic candidates for multiferroic composite structures, we have studied the crystal structure, dielectric, transport, and magnetic properties of Co0.65Zn0.35Fe2O4 (CZFO). Rietveld refinement of X-ray diffraction patterns confirms the phase purity with a cubic crystal structure with the (Fd3[combining macron]m) space group; however, we have found a surprisingly large magneto-dielectric anomaly at the Néel temperature, unexpected for a cubic structure. The presence of mixed valences of Fe2+/Fe3+ cations is probed by X-ray photoelectron spectroscopy (XPS), which supports the catonic ordering-mediated large dielectric response. Large dielectric permittivity dispersion with a broad anomaly is observed in the vicinity of the magnetic phase transition temperature (TN) of CZFO suggesting a strong correlation between dielectric and magnetic properties. The evidence of strong spin-polaron coupling has been established from temperature dependent dielectric, ac conductivity and magnetization studies. The ferrimagnetic-paramagnetic phase transition of CZFO has been found at ∼640 K, which is well above room temperature. CZFO exhibits low loss tangent, a high dielectric constant, large magnetization with soft magnetic behavior and magnetodielectric coupling above room temperature, elucidating the possible potential candidates for multiferroic composite structures as well as for multifunctional and spintronics device applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA