Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961551

RESUMO

Background: Chronic inflammation initiated by inflammatory monocytes underlies the pathogenesis of atherosclerosis. However, approaches that can effectively resolve chronic low-grade inflammation targeting monocytes are not readily available. The small chemical compound 4-phenylbutyric acid (4-PBA) exhibits broad anti-inflammatory effects in reducing atherosclerosis. Selective delivery of 4-PBA reprogrammed monocytes may hold novel potential in providing targeted and precision therapeutics for the treatment of atherosclerosis. Methods: Systems analyses integrating single-cell RNA-sequencing and complementary immunological approaches characterized key resolving characteristics as well as defining markers of reprogrammed monocytes trained by 4-PBA. Molecular mechanisms responsible for monocyte reprogramming was assessed by integrated biochemical and genetic approaches. The inter-cellular propagation of homeostasis resolution was evaluated by co-culture assays with donor monocytes trained by 4-PBA and recipient naïve monocytes. The in vivo effects of monocyte resolution and atherosclerosis prevention by 4-PBA were assessed with the high fat diet-fed ApoE -/- mouse model with i.p. 4-PBA administration. Furthermore, the selective efficacy of 4-PBA trained monocytes were examined by i.v. transfusion of ex vivo trained monocytes by 4-PBA into recipient high fat diet-fed ApoE -/- mice. Results: In this study, we found that monocytes can be potently reprogrammed by 4-PBA into an immune-resolving state characterized by reduced adhesion and enhanced expression of anti-inflammatory mediator CD24. Mechanistically, 4-PBA reduced the expression of ICAM-1 via reducing peroxisome stress and attenuating SYK-mTOR signaling. Concurrently, 4-PBA enhanced the expression of resolving mediator CD24 through promoting PPARγ neddylation mediated by TOLLIP. 4-PBA trained monocytes can effectively propagate anti-inflammation activity to neighboring monocytes through CD24. Our data further demonstrated that 4-PBA trained monocytes effectively reduce atherosclerosis pathogenesis when administered in vivo . Conclusion: Our study describes a robust and effective approach to generate resolving monocytes, characterizes novel mechanisms for targeted monocyte reprogramming, and offers a precision-therapeutics for atherosclerosis based on delivering reprogrammed resolving monocytes.

2.
Handb Exp Pharmacol ; 276: 23-41, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34085119

RESUMO

Innate immunity exhibits memory characteristics, reflected not only in selective recognition of external microbial or internal damage signals, but more importantly in history and signal-strength dependent reprogramming of innate leukocytes characterized by priming, tolerance, and exhaustion. Key innate immune cells such as monocytes and neutrophils can finely discern and attune to the duration and intensity of external signals through rewiring of internal signaling circuitries, giving rise to a vast array of discreet memory phenotypes critically relevant to managing tissue homeostasis as well as diverse repertoires of inflammatory conditions. This review will highlight recent advances in this rapidly expanding field of innate immune programming and memory, as well as its translational implication in the pathophysiology of selected inflammatory diseases.


Assuntos
Imunidade Inata , Memória Imunológica , Humanos , Tolerância Imunológica , Monócitos , Transdução de Sinais
3.
Front Immunol ; 12: 778830, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777396

RESUMO

Pathogenic inflammation and immuno-suppression are cardinal features of exhausted monocytes increasingly recognized in septic patients and murine models of sepsis. However, underlying mechanisms responsible for the generation of exhausted monocytes have not been addressed. In this report, we examined the generation of exhausted primary murine monocytes through prolonged and repetitive challenges with high dose bacterial endotoxin lipopolysaccharide (LPS). We demonstrated that repetitive LPS challenges skew monocytes into the classically exhausted Ly6Chi population, and deplete the homeostatic non-classical Ly6Clo population, reminiscent of monocyte exhaustion in septic patients. scRNAseq analyses confirmed the expansion of Ly6Chi monocyte cluster, with elevation of pathogenic inflammatory genes previously observed in human septic patients. Furthermore, we identified CD38 as an inflammatory mediator of exhausted monocytes, associated with a drastic depletion of cellular NAD+; elevation of ROS; and compromise of mitochondria respiration, representative of septic monocytes. Mechanistically, we revealed that STAT1 is robustly elevated and sustained in LPS-exhausted monocytes, dependent upon the TRAM adaptor of the TLR4 pathway. TRAM deficient monocytes are largely resistant to LPS-mediated exhaustion, and retain the non-classical homeostatic features. Together, our current study addresses an important yet less-examined area of monocyte exhaustion, by providing phenotypic and mechanistic insights regarding the generation of exhausted monocytes.


Assuntos
Memória Imunológica , Inflamação/imunologia , Monócitos/imunologia , Sepse/imunologia , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/metabolismo , Animais , Antígenos Ly/genética , Antígenos Ly/metabolismo , Antígeno B7-2/genética , Antígeno B7-2/metabolismo , Células Cultivadas , Memória Imunológica/efeitos dos fármacos , Inflamação/genética , Inflamação/metabolismo , Fator 4 Semelhante a Kruppel/metabolismo , Lipopolissacarídeos/farmacologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Fenótipo , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Fator de Transcrição STAT1/metabolismo , Sepse/genética , Sepse/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
4.
J Immunol ; 206(12): 2980-2988, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34031144

RESUMO

Low-grade inflammatory monocytes critically contribute to the pathogenesis of chronic inflammatory diseases such as atherosclerosis. The elevated expression of coactivating molecule CD40 as well as key adhesion molecule CD11a is a critical signature of inflammatory monocytes from both human patients with coronary artery diseases as well as in animal models of atherosclerosis. In this study, we report that subclinical superlow-dose LPS, a key risk factor for low-grade inflammation and atherosclerosis, can potently trigger the induction of CD40 and CD11a on low-grade inflammatory monocytes. Subclinical endotoxin-derived monocytes demonstrate immune-enhancing effects and suppress the generation of regulatory CD8+CD122+ T cells, which further exacerbate the inflammatory environment conducive for chronic diseases. Mechanistically, subclinical endotoxemia activates TRAM-mediated signaling processes, leading to the activation of MAPK and STAT5, which is responsible for the expression of CD40 and CD11a. We also demonstrate that TRAM-mediated monocyte polarization can be suppressed by IRAK-M. IRAK-M-deficient monocytes have increased expression of TRAM, elevated induction of CD40 and CD11a by subclinical-dose endotoxin, and are more potent in suppressing the CD8 regulatory T cells. Mice with IRAK-M deficiency generate an increased population of inflammatory monocytes and a reduced population of CD8 T regulatory cells. In contrast, mice with TRAM deficiency exhibit a significantly reduced inflammatory monocyte population and an elevated CD8 T regulatory cell population. Together, our data reveal a competing intracellular circuitry involving TRAM and IRAK-M that modulate the polarization of low-grade inflammatory monocytes with an immune-enhancing function.


Assuntos
Moléculas de Adesão Celular/imunologia , Inflamação/imunologia , Quinases Associadas a Receptores de Interleucina-1/imunologia , Monócitos/imunologia , Receptores de Interleucina/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Células Cultivadas , Quinases Associadas a Receptores de Interleucina-1/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Sci Rep ; 10(1): 14397, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873853

RESUMO

Pathogenic inflammation and immune suppression are the cardinal features that underlie the pathogenesis of severe systemic inflammatory syndrome and sepsis. Neutrophil exhaustion may play a key role during the establishment of pathogenic inflammation and immune suppression through elevated expression of inflammatory adhesion molecules such as ICAM1 and CD11b as well as immune-suppressors such as PD-L1. However, the mechanism of neutrophil exhaustion is not well understood. We demonstrated that murine primary neutrophils cultured in vitro with the prolonged lipopolysaccharides (LPS) stimulation can effectively develop an exhaustive phenotype resembling human septic neutrophils with elevated expression of ICAM1, CD11b, PD-L1 as well as enhanced swarming and aggregation. Mechanistically, we observed that TICAM2 is involved in the generation of neutrophil exhaustion, as TICAM2 deficient neutrophils have the decreased expression of ICAM1, CD11b, PD-L1, and the reduced aggregation following the prolonged LPS challenge as compared to wild type (WT) neutrophils. LPS drives neutrophil exhaustion through TICAM2 mediated activation of Src family kinases (SFK) and STAT1, as the application of SFK inhibitor Dasatinib blocks neutrophil exhaustion triggered by the prolonged LPS challenge. Functionally, TICAM2 deficient mice were protected from developing severe systemic inflammation and multi-organ injury following the chemical-induced mucosal damage. Together, our data defined a key role of TICAM2 in facilitating neutrophil exhaustion and that targeting TICAM2 may be a potential approach to treating the severe systemic inflammation.


Assuntos
Antígeno CD11b/metabolismo , Agregação Celular/genética , Integrina beta1/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Neutrófilos/imunologia , Receptores de Interleucina/metabolismo , Sepse/imunologia , Transdução de Sinais/genética , Animais , Agregação Celular/efeitos dos fármacos , Células Cultivadas , Dasatinibe/farmacologia , Modelos Animais de Doenças , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Fenótipo , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Receptores de Interleucina/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
6.
Immunohorizons ; 4(7): 392-401, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32631901

RESUMO

Excessive inflammatory reactions mediated by first-responder cells such as neutrophils contribute to the severity of multiorgan failure associated with systemic injury and infection. Systemic subclinical endotoxemia due to mucosal leakage may aggravate neutrophil activation and tissue injury. However, mechanisms responsible for neutrophil inflammatory polarization are not well understood. In this study, we demonstrate that subclinical low-dose endotoxemia can potently polarize neutrophils into an inflammatory state in vivo and in vitro, as reflected in elevated expression of adhesion molecules such as ICAM-1 and CD29, and reduced expression of suppressor molecule CD244. When subjected to a controlled administration of gut-damaging chemical dextran sulfate sodium, mice conditioned with subclinical dose LPS exhibit significantly elevated infiltration of neutrophils into organs such as liver, colon, and spleen, associated with severe multiorgan damage as measured by biochemical as well as histological assays. Subclinical dose LPS is sufficient to induce potent activation of SRC kinase as well as downstream activation of STAT1/STAT5 in neutrophils, contributing to the inflammatory neutrophil polarization. We also demonstrate that the administration of 4-phenylbutyric acid, an agent known to relieve cell stress and enhance peroxisome function, can reduce the activation of SRC kinase and enhance the expression of suppressor molecule CD244 in neutrophils. We show that i.v. injection of 4-phenylbutyric acid conditioned neutrophils can effectively reduce the severity of multiorgan damage in mice challenged with dextran sulfate sodium. Collectively, our data, to our knowledge, reveal novel inflammatory polarization of neutrophils by subclinical endotoxemia conducive for aggravated multiorgan damage as well as potential therapeutic intervention.


Assuntos
Endotoxemia/imunologia , Neutrófilos/imunologia , Fator de Transcrição STAT1/imunologia , Animais , Moléculas de Adesão Celular/imunologia , Moléculas de Adesão Celular/metabolismo , Colo/patologia , Endotoxemia/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/farmacologia , Molécula 1 de Adesão Intercelular/uso terapêutico , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/toxicidade , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Fator de Transcrição STAT1/metabolismo , Baço/patologia
8.
Front Immunol ; 7: 23, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26870039

RESUMO

Staphylococcal enterotoxin B (SEB) of Staphylococcus aureus, and related superantigenic toxins produced by myriad microbes, are potent stimulators of the immune system causing a variety of human diseases from transient food poisoning to lethal toxic shock. These protein toxins bind directly to specific Vß regions of T-cell receptors (TCR) and major histocompatibility complex (MHC) class II on antigen-presenting cells, resulting in hyperactivation of T lymphocytes and monocytes/macrophages. Activated host cells produce excessive amounts of proinflammatory cytokines and chemokines, especially tumor necrosis factor α, interleukin 1 (IL-1), IL-2, interferon γ (IFNγ), and macrophage chemoattractant protein 1 causing clinical symptoms of fever, hypotension, and shock. Because of superantigen-induced T cells skewed toward TH1 helper cells, and the induction of proinflammatory cytokines, superantigens can exacerbate autoimmune diseases. Upon TCR/MHC ligation, pathways induced by superantigens include the mitogen-activated protein kinase cascades and cytokine receptor signaling, resulting in activation of NFκB and the phosphoinositide 3-kinase/mammalian target of rapamycin pathways. Various mouse models exist to study SEB-induced shock including those with potentiating agents, transgenic mice and an "SEB-only" model. However, therapeutics to treat toxic shock remain elusive as host response genes central to pathogenesis of superantigens have only been identified recently. Gene profiling of a murine model for SEB-induced shock reveals novel molecules upregulated in multiple organs not previously associated with SEB-induced responses. The pivotal genes include intracellular DNA/RNA sensors, apoptosis/DNA damage-related molecules, immunoproteasome components, as well as antiviral and IFN-stimulated genes. The host-wide induction of these, and other, antimicrobial defense genes provide evidence that SEB elicits danger signals resulting in multi-organ damage and toxic shock. Ultimately, these discoveries might lead to novel therapeutics for various superantigen-based diseases.

9.
Toxins (Basel) ; 6(9): 2626-56, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25198129

RESUMO

Some pathogenic spore-forming bacilli employ a binary protein mechanism for intoxicating the intestinal tracts of insects, animals, and humans. These Gram-positive bacteria and their toxins include Clostridium botulinum (C2 toxin), Clostridium difficile (C. difficile toxin or CDT), Clostridium perfringens (ι-toxin and binary enterotoxin, or BEC), Clostridium spiroforme (C. spiroforme toxin or CST), as well as Bacillus cereus (vegetative insecticidal protein or VIP). These gut-acting proteins form an AB complex composed of ADP-ribosyl transferase (A) and cell-binding (B) components that intoxicate cells via receptor-mediated endocytosis and endosomal trafficking. Once inside the cytosol, the A components inhibit normal cell functions by mono-ADP-ribosylation of globular actin, which induces cytoskeletal disarray and death. Important aspects of each bacterium and binary enterotoxin will be highlighted in this review, with particular focus upon the disease process involving the biochemistry and modes of action for each toxin.


Assuntos
Bacillus/patogenicidade , Proteínas de Bactérias , Toxinas Bacterianas , Clostridium/patogenicidade , Animais , Bacillus/metabolismo , Infecções Bacterianas , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Clostridium/metabolismo , Gastroenteropatias , Humanos , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA