Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 20(8): 1736-1745, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38288734

RESUMO

Hydrogel microparticles ranging from 0.1-100 µm, referred to as microgels, are attractive for biological applications afforded by their injectability and modularity, which allows facile delivery of mixed populations for tailored combinations of therapeutics. Significant efforts have been made to broaden methods for microgel production including via the materials and chemistries by which they are made. Via droplet-based-microfluidics we have established a method for producing click poly-(ethylene)-glycol (PEG)-based microgels with or without chemically crosslinked liposomes (lipo-microgels) through the Michael-type addition reaction between thiol and either vinyl-sulfone or maleimide groups. Unifom spherical microgels and lipo-microgels were generated with sizes of 74 ± 16 µm and 82 ± 25 µm, respectively, suggesting injectability that was further supported by rheological analyses. Super-resolution confocal microscopy was used to further verify the presence of liposomes within the lipo-microgels and determine their distribution. Atomic force microscopy (AFM) was conducted to compare the mechanical properties and network architecture of bulk hydrogels, microgels, and lipo-microgels. Further, encapsulation and release of model cargo (FITC-Dextran 5 kDa) and protein (equine myoglobin) showed sustained release for up to 3 weeks and retention of protein composition and secondary structure, indicating their ability to both protect and release cargos of interest.


Assuntos
Hidrogéis , Microgéis , Animais , Cavalos , Hidrogéis/química , Lipossomos , Microfluídica , Reologia
2.
Sci Adv ; 9(10): eade3186, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36888709

RESUMO

Late recurrences of breast cancer are hypothesized to arise from disseminated tumor cells (DTCs) that reactivate after dormancy and occur most frequently with estrogen receptor-positive (ER+) breast cancer cells (BCCs) in bone marrow (BM). Interactions between the BM niche and BCCs are thought to play a pivotal role in recurrence, and relevant model systems are needed for mechanistic insights and improved treatments. We examined dormant DTCs in vivo and observed DTCs near bone lining cells and exhibiting autophagy. To study underlying cell-cell interactions, we established a well-defined, bioinspired dynamic indirect coculture model of ER+ BCCs with BM niche cells, human mesenchymal stem cells (hMSCs) and fetal osteoblasts (hFOBs). hMSCs promoted BCC growth, whereas hFOBs promoted dormancy and autophagy, regulated in part by tumor necrosis factor-α and monocyte chemoattractant protein 1 receptor signaling. This dormancy was reversible by dynamically changing the microenvironment or inhibiting autophagy, presenting further opportunities for mechanistic and targeting studies to prevent late recurrence.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/metabolismo , Técnicas de Cocultura , Medula Óssea/patologia , Transdução de Sinais , Comunicação Celular , Microambiente Tumoral
3.
Biomater Sci ; 10(19): 5689-5706, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36018297

RESUMO

The pulmonary fibrotic microenvironment is characterized by increased stiffness of lung tissue and enhanced secretion of profibrotic soluble cues contributing to a feedback loop that leads to dysregulated wound healing and lung failure. Pinpointing the individual and tandem effects of profibrotic stimuli in impairing immune cell response remains difficult and is needed for improved therapeutic strategies. We utilized a statistical design of experiment (DOE) to investigate how microenvironment stiffness and interleukin 13 (IL13), a profibrotic soluble factor linked with disease severity, contribute to the impaired macrophage response commonly observed in pulmonary fibrosis. We used engineered bioinspired hydrogels of different stiffness, ranging from healthy to fibrotic lung tissue, and cultured murine alveolar macrophages (MH-S cells) with or without IL13 to quantify cell response and analyze independent and synergistic effects. We found that, while both stiffness and IL13 independently influence macrophage morphology, phenotype, phagocytosis and efferocytosis, these factors work synergistically to exacerbate impaired macrophage phenotype and efferocytosis. These unique findings provide insights into how macrophages in fibrotic conditions are not as effective in clearing debris, contributing to fibrosis initiation/progression, and more broadly inform how underlying drivers of fibrosis modulate immune cell response to facilitate therapeutic strategies.


Assuntos
Macrófagos Alveolares , Fibrose Pulmonar , Animais , Fibrose , Hidrogéis/uso terapêutico , Interleucina-13/uso terapêutico , Macrófagos Alveolares/patologia , Camundongos , Fenótipo , Fibrose Pulmonar/induzido quimicamente
4.
Adv Biosyst ; 4(9): e2000119, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32603024

RESUMO

Late recurrences of breast cancer are hypothesized to originate from disseminated tumor cells that re-activate after a long period of dormancy, ≥5 years for estrogen-receptor positive (ER+) tumors. An outstanding question remains as to what the key microenvironment interactions are that regulate this complex process, and well-defined human model systems are needed for probing this. Here, a robust, bioinspired 3D ER+ dormancy culture model is established and utilized to probe the effects of matrix properties for common sites of late recurrence on breast cancer cell dormancy. Formation of dormant micrometastases over several weeks is examined for ER+ cells (T47D, BT474), where the timing of entry into dormancy versus persistent growth depends on matrix composition and cell type. In contrast, triple negative cells (MDA-MB-231), associated with early recurrence, are not observed to undergo long-term dormancy. Bioinformatic analyses quantitatively support an increased "dormancy score" gene signature for ER+ cells (T47D) and reveal differential expression of genes associated with different biological processes based on matrix composition. Further, these analyses support a link between dormancy and autophagy, a potential survival mechanism. This robust model system will allow systematic investigations of other cell-microenvironment interactions in dormancy and evaluation of therapeutics for preventing late recurrence.


Assuntos
Neoplasias da Mama , Técnicas de Cultura de Células/métodos , Modelos Biológicos , Receptores de Estrogênio/metabolismo , Microambiente Tumoral/fisiologia , Autofagia , Neoplasias da Mama/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/fisiopatologia , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Feminino , Humanos , Biologia Sintética
5.
APL Bioeng ; 3(1): 016101, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31069334

RESUMO

The extracellular matrix (ECM) is thought to play a critical role in the progression of breast cancer. In this work, we have designed a photopolymerizable, biomimetic synthetic matrix for the controlled, 3D culture of breast cancer cells and, in combination with imaging and bioinformatics tools, utilized this system to investigate the breast cancer cell response to different matrix cues. Specifically, hydrogel-based matrices of different densities and modified with receptor-binding peptides derived from ECM proteins [fibronectin/vitronectin (RGDS), collagen (GFOGER), and laminin (IKVAV)] were synthesized to mimic key aspects of the ECM of different soft tissue sites. To assess the breast cancer cell response, the morphology and growth of breast cancer cells (MDA-MB-231 and T47D) were monitored in three dimensions over time, and differences in their transcriptome were assayed using next generation sequencing. We observed increased growth in response to GFOGER and RGDS, whether individually or in combination with IKVAV, where binding of integrin ß1 was key. Importantly, in matrices with GFOGER, increased growth was observed with increasing matrix density for MDA-MB-231s. Further, transcriptomic analyses revealed increased gene expression and enrichment of biological processes associated with cell-matrix interactions, proliferation, and motility in matrices rich in GFOGER relative to IKVAV. In sum, a new approach for investigating breast cancer cell-matrix interactions was established with insights into how microenvironments rich in collagen promote breast cancer growth, a hallmark of disease progression in vivo, with opportunities for future investigations that harness the multidimensional property control afforded by this photopolymerizable system.

6.
J Mater Chem B ; 5(21): 3852-3861, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264247

RESUMO

Among inorganic nanomaterials, layered double hydroxides (LDHs) and gold nanoparticles (Au NPs) have received great attention in nanobiomedicine due to their unique properties. In this work, we have designed a nanohybrid of an LDH with Au NPs (LDH-Au) in order to use it for photothermal therapy, and optical and fluorescence imaging of cancer cells. The structural characteristics of the nanohybrid are investigated using X-ray diffraction, infrared spectroscopy, electron microscopy and elemental analyses. The extinction spectra of the nanohybrid exhibits broad absorption ranging from the visible to near infrared (NIR) region (500-1000 nm). The photothermal activity of the nanohybrid is explored using NIR laser irradiation. The electric field enhancement in the nanohybrid due to the interaction of Au NPs on the LDH is speculated through finite-difference time-domain (FDTD) calculations. The LDH-Au nanohybrid is found to be biocompatible with normal murine fibroblast (L929), human breast cancer (MCF-7) and cervical cancer (HeLa) cell lines up to a concentration of 1 mg mL-1. The nanohybrid is explored for in vitro photothermal therapy of MCF-7 and HeLa cell lines. As a photothermal agent, the nanohybrid shows that 10 min exposure to an 808 nm laser (500 mW) is adequate to inhibit about 70% of cancer cells. Further, the nanohybrid is tagged with FITC to study both optical and fluorescence imaging with MCF-7 cell lines. The results demonstrate that the LDH-Au nanohybrid provides an innovative approach to photothermal therapy, and optical and fluorescence imaging of cancer cells.

7.
Theranostics ; 6(10): 1557-72, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446490

RESUMO

Smart drug delivery system with strategic drug distribution is the future state-of-the-art treatment for any malignancy. To investigate therapeutic potential of such nanoparticle mediated delivery system, we examined the efficacy of dual drug-loaded, pH and thermo liable lipid coated mesoporous iron oxide-based magnetic nanoassemblies (DOX:TXL-LMMNA) in mice bearing both drug sensitive (A2780(S)) and drug resistant (A2780-CisR) ovarian cancer tumor xenografts. In presence of an external AC magnetic field (ACMF), DOX:TXL-LMMNA particles disintegrate to release encapsulated drug due to hyperthermic temperatures (41-45 ºC). In vivo bio distribution study utilizing the optical and magnetic properties of DOX:TXL-LMMNA particles demonstrated minimum organ specific toxicity. Noninvasive bioluminescence imaging of mice bearing A2780(S) tumors and administered with DOX-TXL-LMMNA followed by the application of ACMF revealed 65% less luminescence signal and 80% mice showed complete tumor regression within eight days. A six months follow-up study revealed absence of relapse in 70% of the mice. Interestingly, the A2780-CisR tumors which did not respond to drug alone (DOX:TXL) showed 80% reduction in luminescence and tumor volume with DOX:TXL-LMMNA after thermo-chemotherapy within eight days. Cytotoxic effect of DOX:TXL-LMMNA particles was more pronounced in A2780-CisR cells than in their sensitive counterpart. Thus these novel stimuli sensitive nanoassemblies hold great promise for therapy resistant malignancies and future clinical applications.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/administração & dosagem , Resistência a Medicamentos , Nanopartículas de Magnetita/administração & dosagem , Neoplasias Ovarianas/tratamento farmacológico , Animais , Modelos Animais de Doenças , Feminino , Xenoenxertos , Camundongos , Resultado do Tratamento
8.
Nanotechnology ; 26(47): 475101, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26526608

RESUMO

Mesoporous magnetic nanoparticles (MMNPs) have been synthesized through a facile soft chemical route and are conjugated with multiple therapeutic agents. These MMNPs have the ability to contain and deliver both hydrophilic and hydrophobic drugs simultaneously with the mediation of an AC magnetic field (ACMF). Furthermore, the synthesis and characterization of doxorubicin hydrochloride:paclitaxel (DOX:TXL) and doxorubicin hydrochloride:cisplatin (DOX:Cis-Pt) conjugates are demonstrated. MMNPs show an excellent loading efficiency of ~96:83% (DOX:TXL) and ~93:83% (DOX:Cis-Pt) along with a loading capacity of ~0.002:0.002 mg mg(-1) (DOX:TXL) and ~0.002:0.002 mg mg(-1) (DOX:Cis-Pt), respectively. Over a period of 180 h, a sustained release of drugs is observed and shows a better efficiency at pH 4.3 (~85:63%-DOX:TXL and ~86:73%-DOX:Cis-Pt) compared to that under physiological pH conditions (~28:22%-DOX:TXL and ~26:22%-DOX:Cis-Pt). The MMNPs can release ~37:22% (DOX:TXL) and ~34:25% (DOX:Cis-Pt) within 30 min when triggered by an ACMF (at ~43 °C). The in vitro cytotoxic effect, the ROS generation level and cell cycle distribution analysis of DOX:TXL-MMNPs and DOX:Cis-Pt-MMNPs treated MDA-MB231, MCF-7 and PC3 cancer cells are demonstrated. Enhanced cell apoptosis is observed by thermo-chemotherapy which includes application of an ACMF for 15 min. Specifically, DOX:TXL-MMNPs are more effective than DOX:Cis-Pt-MMNPs towards the PC3 cell line. The internalization of multiple drug loaded MMNPs by cells and their morphological changes due to thermo-chemotherapy are confirmed through confocal microscopy. From the present results, it is observed that the DOX:TXL and DOX:Cis-Pt conjugated MMNPs, under an ACMF, can readily minimize drug resistance. This has significantly enhanced the cell apoptosis of target cancer cells.


Assuntos
Apoptose/efeitos dos fármacos , Doxorrubicina/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas de Magnetita/química , Paclitaxel/farmacocinética , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células MCF-7 , Campos Magnéticos , Nanopartículas de Magnetita/ultraestrutura , Nanoconjugados/química , Porosidade , Tensoativos
9.
Colloids Surf B Biointerfaces ; 136: 625-33, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26477008

RESUMO

Bladder cancer is one of the deadliest forms of cancer in modern medicine which despite recent progress has remained incurable and challenging for researchers. There is unmet need to address this endemic as the number of patients are growing by about 10,000 every year world-wide. Here, we report a minimally invasive magnetic chemotherapy method to address this problem where polyethylene glycol (PEG) functionalized Fe3O4 magnetic nanostructures (MNS) are homogeneously embedded in thermally responsive poly(N-isopropylacrylamide, NIPAAm) hydrogels (HG). The system (HG-MNS) loaded with anti-cancer drug doxorubicin (DOX) incubated with cancer cell lines subjected to external radiofrequency (RF) field can remotely stimulate the release of drug smartly at the site. The in vitro efficacy investigated on bladder cancer (T-24) cell lines showed the potential of the system in dealing with the disease successfully. Further, the materials preferential accumulation via systemic delivery was studied using swiss mice model. Vital tissue organs like liver, lung and heart were analysed by magnetic resonance imaging (MRI). A detail accounts of the materials optimization, cytotoxicity and anti-proliferation activity tests with apoptosis analysis by flow cytometry after RF exposure (250 kHz) to the cells and in vivo biodistribution data are discussed in the paper.


Assuntos
Hidrogéis/uso terapêutico , Neoplasias da Bexiga Urinária/terapia , Humanos , Hidrogéis/farmacocinética , Distribuição Tecidual
10.
ACS Appl Mater Interfaces ; 7(15): 8013-22, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25821899

RESUMO

In light of the growing interest in the search for cheap and effective solutions for cancer treatment, we report a simple one pot synthesis of polymer stabilized iron oxide-graphene (PIG) that could be realized on a large scale. The structural (Fe3O4 particle size of ∼11 nm), functional (various oxygen containing moieties), and magnetic (moment of ∼43 emu/g) properties of PIG are explored using various characterization techniques for possible biomedical applications. PIG shows good colloidal stability and is biocompatible even at higher concentrations (2.5 mg/mL) by virtue of cross-linking polymers. The biocompatibility of the composite has been tested using HeLa cell lines by computing the percentage of the reactive oxygen species through the 2,7-dichlorofluorescein (DCF) intensity level. PIG has the ability to load and release both hydrophobic and hydrophilic drugs with a good loading efficiency and capacity. The dug loading efficiency of PIG is measured to be ∼87% and ∼91% for doxorubicin (DOX) and paclitaxel (PTXL), respectively. Under an AC magnetic field, superparamagnetic PIG (2.5 mg/mL) takes less than 16 min to reach the stable hyperthermia temperature, suggesting it as a good anticancer material. A time-dependent cellular uptake of doxorubicin-conjugated PIG has been studied to optimize the parameters for thermo-chemotherapy of cancer. The synergetic effect of both the drug and hyperthermia is observed in the killing of the cancerous cells, verified by computing the cell apoptotic population using a flow cytometer. However, it has been noticed that, even in the absence of chemotherapy, PIG shows good antiproliferative activity with thermotherapy alone.


Assuntos
Doxorrubicina/administração & dosagem , Grafite/química , Nanopartículas de Magnetita/química , Nanocápsulas/administração & dosagem , Neoplasias Experimentais/tratamento farmacológico , Fotoquimioterapia/métodos , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/química , Linhagem Celular Tumoral , Difusão , Doxorrubicina/química , Estabilidade de Medicamentos , Excipientes/química , Humanos , Nanocápsulas/química , Nanocápsulas/ultraestrutura , Neoplasias Experimentais/patologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Tensoativos/química , Resultado do Tratamento
11.
Colloids Surf B Biointerfaces ; 122: 396-403, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25089699

RESUMO

Core-shell Fe3O4-SiO2 magnetic nanoparticles (MNPs) have been synthesized using a simple synthesis procedure at different temperatures. These MNPs are used to investigate the effect of surface coating on specific absorption rate (SAR) under alternating magnetic field. The temperature achieved by silica coated Fe3O4 is higher than that by uncoated MNPs (Fe3O4). This can be attributed to extent of increase in Brownian motion for silica coated MNPs. The sample prepared at optimized temperature of 80°C shows the highest SAR value of 111W/g. It is found that SAR value decreases with increase in shell thickness. The chemical stability of these samples is analyzed by leaching experiments at pH 2-7. The silica coated samples are stable up to 7 days even at pH 2. Biocompatibility of the MNPs is evaluated in vitro by assessing their cytotoxicity on L929 and human cervical cancer cells (HeLa cells) using sulforhodamine-B assay. Their hyperthermic killing ability is also evaluated in HeLa cells using the same method. Cells treated with MNPs along with induction heating show decrease in viability as compared to that without induction heating. Further, cell death is found to be ∼55% more in cells treated with silica coated MNPs under induction heating as compared to untreated control. These results establish the efficacy of Fe3O4-SiO2 prepared at 80°C in killing of tumor cells by cellular hyperthermia.


Assuntos
Compostos Ferrosos/química , Hipertermia Induzida , Nanopartículas , Silanos/química , Animais , Linhagem Celular , Células HeLa , Humanos , Camundongos , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia de Mossbauer , Relação Estrutura-Atividade
12.
Dalton Trans ; 43(30): 11728-38, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-24954721

RESUMO

We report a biphasic system (BPS) consisting of PEGylated Tb(3+)-doped GdPO4 nanorice sensitized with Ce(3+) (PEG-NRs) and glutamic acid coated iron oxide nanoparticles (IONPs) with multifunctional capabilities. The mesoporous PEG-NRs exhibit green light luminescence properties and a high degree of aqueous stability. Their drug loading and release capacities were investigated for anti-cancer chemo doxorubicin (DOX). Their mesoporous nature and availability of plenty of negatively charged functional groups (-COO(-)) on the surface of PEG-NRs facilitate approximately 94 wt% DOX loading. In vitro studies carried out for PEG-NRs and their biphasic integrated system with iron oxide using HeLa and MCF-7 cell lines demonstrated their cell killing efficacy. The green luminescence observed under confocal laser scanning microscopy (CLSM) confirms the cellular uptake of PEG-NRs by HeLa cell lines and their accumulation in the cytoplasm. Approximately 50-55% of HeLa and MCF-7 cell death was observed after 24 h of incubation with DOX loaded BPS (2 mg IONPs and 0.25 mg PEG-NRs + DOX), which further increased to about 90% when exposed to an AC magnetic field (ACMF) for 25 min. Our findings demonstrate that the therapeutic efficacy of BPS loaded with DOX could be a powerful multimodal system for imaging and synergistic chemo-thermal cancer therapy.


Assuntos
Cério/química , Compostos Férricos/química , Gadolínio/química , Nanopartículas Metálicas/química , Compostos Organometálicos/química , Fosfatos/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Portadores de Fármacos , Humanos , Luminescência , Compostos Organometálicos/farmacologia
13.
Acta Biomater ; 10(7): 2976-87, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24747086

RESUMO

A new pH-sensitive and thermosensitive dual drug delivery system consisting of thin lipid layer encapsulated mesoporous magnetite nanoassemblies (MMNA) has been developed which can deliver two anticancer drugs simultaneously. The formulation of lipid layer used is 5:2:2:2 w/w, DPPC:cholesterol:DSPE-PEG2000:MMNA. The structure, morphology and magnetic properties of MMNA and lipid coated MMNA (LMMNA) were thoroughly characterized. This hybrid system was investigated for its ability to carry two anticancer drugs as well as its ability to provide heat under an alternating current magnetic field (ACMF). A very high loading efficiency of up to ∼81% of doxorubicin hydrochloride (DOX) with an ∼0.02 mg mg(-1) loading capacity and ∼60% of paclitaxel (TXL) with an ∼0.03 mg mg(-1) loading capacity are obtained with LMMNA. A sustained release of drug is observed over a period of 172 h, with better release, of ∼88:53% (DOX:TXL), at pH 4.3 compared to the ∼28:26% (DOX:TXL) in physiological conditions (pH 7.4). An enhanced release of ∼72 and ∼68% is recorded for DOX and TXL, respectively, during the first hour with the application of an ACMF (∼43°C). A greater in vitro cytotoxic effect is observed with the two drugs compared to them individually in HeLa, MCF-7 and HepG2 cancer cells. With the application of an ACMF for 10 min, the cell killing efficiency is improved substantially due to simultaneous thermo- and chemotherapy. Confocal microscopy confirms the internalization of drug loaded MMNA and LMMNA by cells and their morphological changes during thermochemotherapy.


Assuntos
Sistemas de Liberação de Medicamentos , Concentração de Íons de Hidrogênio , Lipídeos/química , Magnetismo , Neoplasias/terapia , Antineoplásicos/administração & dosagem , Terapia Combinada , Doxorrubicina/administração & dosagem , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Neoplasias/tratamento farmacológico , Difração de Raios X
14.
Nanotechnology ; 24(6): 065101, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23324398

RESUMO

Polyol mediated synthesized luminescent YVO(4):Eu(3+) nanoparticles (NPs) have been encapsulated in mesoporous silica nanoparticles (MSNs) using the sol-gel process. X-ray diffraction and Fourier transform infrared spectroscopy along with transmission electron microscopy confirm the encapsulation of the YVO(4):Eu(3+) NPs in the SiO(2) matrix. N(2) adsorption/desorption analysis confirms the mesoporous nature of the MSNs and YVO(4):Eu(3+)-MSNs. No significant quenching of the YVO(4):Eu(3+) luminescence is observed for YVO(4):Eu(3+)-MSNs. This nanocomposite has been tested as a potential drug carrier. Efficient loading of doxorubicin hydrochloride (DOX), a typical anticancer drug, is observed which reaches up to 93% in 8 mg ml(-1) of YVO(4):Eu(3+)-MSNs. pH sensitive release of DOX is observed, with 54% release for pH 4.3 and 31% in a physiological environment (pH 7.4). Both MSNs and YVO(4):Eu(3+)-MSNs nanocomposites do not show accountable toxicity to two cell lines, i.e. HeLa and MCF-7. However, as desired, toxicity is observed when cells are incubated with DOX loaded YVO(4):Eu(3+)-MSNs. Laser scanning confocal microscopy images confirm the uptake of the nanocomposite in both cell lines. The morphology of the cells (MCF-7) changes after incubation with DOX loaded YVO(4):Eu(3+)-MSNs, indicating an interaction of DOX with the cells. More cytotoxicity to both cell lines with ∼90% killing is observed due to the synergistic effect of magnetic fluid hyperthermia and chemotherapy using a biphasic suspension of superparamagnetic iron oxide magnetic nanoparticles and DOX loaded YVO(4):Eu(3+)-MSNs. In addition, an AC magnetic field triggers an enhanced drug release.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Nanopartículas/uso terapêutico , Neoplasias/diagnóstico , Neoplasias/terapia , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Portadores de Fármacos/toxicidade , Európio/química , Európio/uso terapêutico , Európio/toxicidade , Óxido Ferroso-Férrico/química , Óxido Ferroso-Férrico/uso terapêutico , Óxido Ferroso-Férrico/toxicidade , Humanos , Hipertermia Induzida/métodos , Magnetismo/métodos , Nanopartículas/química , Nanopartículas/toxicidade , Dióxido de Silício/química , Dióxido de Silício/uso terapêutico , Dióxido de Silício/toxicidade , Vanadatos/química , Vanadatos/uso terapêutico , Vanadatos/toxicidade , Ítrio/química , Ítrio/uso terapêutico , Ítrio/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA