Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heart Rhythm O2 ; 4(4): 268-274, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37124559

RESUMO

Background: Long QT syndrome (LQTS) stems from pathogenic variants in KCNQ1 (LQT1), KCNH2 (LQT2), or SCN5A (LQT3) and is characterized by action potential duration (APD) prolongation. Inhibition of serum and glucocorticoid regulated kinase-1 (SGK1) is proposed as a novel therapeutic for LQTS. Objective: The study sought to test the efficacy of novel, selective SGK1 inhibitors in induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) models of LQTS. Methods: The mexiletine (MEX)-sensitive SCN5A-P1332L iPSC-CMs were tested initially compared with a CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 SCN5A-P1332L variant-corrected isogenic control (IC). The SGK1-I1 therapeutic efficacy, compared with MEX, was tested for APD at 90% repolarization (APD90) shortening in SCN5A-P1332L, SCN5A-R1623Q, KCNH2-G604S, and KCNQ1-V254M iPSC-CMs using FluoVolt. Results: The APD90 was prolonged in SCN5A-P1332L iPSC-CMs compared with its IC (646 ± 7 ms vs 482 ± 23 ms; P < .0001). MEX shortened the APD90 to 560 ± 7 ms (52% attenuation, P < .0001). SGK1-I1 shortened the APD90 to 518 ± 5 ms (78% attenuation, P < .0001) but did not shorten the APD90 in the IC. SGK1-I1 shortened the APD90 of the SCN5A-R1623Q iPSC-CMs (753 ± 8 ms to 475 ± 19 ms compared with 558 ± 19 ms with MEX), the KCNH2-G604S iPSC-CMs (666 ± 10 ms to 574 ± 18 ms vs 538 ± 15 ms after MEX), and the KCNQ1-V254M iPSC-CMs (544 ± 10 ms to 475 ± 11ms; P = .0004). Conclusions: Therapeutically inhibiting SGK1 effectively shortens the APD in human iPSC-CM models of the 3 major LQTS genotypes. These preclinical data support development of SGK1 inhibitors as novel, first-in-class therapy for patients with congenital LQTS.

2.
Europace ; 25(5)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37099628

RESUMO

AIMS: Current long QT syndrome (LQTS) therapy, largely based on beta-blockade, does not prevent arrhythmias in all patients; therefore, novel therapies are warranted. Pharmacological inhibition of the serum/glucocorticoid-regulated kinase 1 (SGK1-Inh) has been shown to shorten action potential duration (APD) in LQTS type 3. We aimed to investigate whether SGK1-Inh could similarly shorten APD in LQTS types 1 and 2. METHODS AND RESULTS: Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and hiPSC-cardiac cell sheets (CCS) were obtained from LQT1 and LQT2 patients; CMs were isolated from transgenic LQT1, LQT2, and wild-type (WT) rabbits. Serum/glucocorticoid-regulated kinase 1 inhibition effects (300 nM-10 µM) on field potential durations (FPD) were investigated in hiPSC-CMs with multielectrode arrays; optical mapping was performed in LQT2 CCS. Whole-cell and perforated patch clamp recordings were performed in isolated LQT1, LQT2, and WT rabbit CMs to investigate SGK1-Inh (3 µM) effects on APD. In all LQT2 models across different species (hiPSC-CMs, hiPSC-CCS, and rabbit CMs) and independent of the disease-causing variant (KCNH2-p.A561V/p.A614V/p.G628S/IVS9-28A/G), SGK1-Inh dose-dependently shortened FPD/APD at 0.3-10 µM (by 20-32%/25-30%/44-45%). Importantly, in LQT2 rabbit CMs, 3 µM SGK1-Inh normalized APD to its WT value. A significant FPD shortening was observed in KCNQ1-p.R594Q hiPSC-CMs at 1/3/10 µM (by 19/26/35%) and in KCNQ1-p.A341V hiPSC-CMs at 10 µM (by 29%). No SGK1-Inh-induced FPD/APD shortening effect was observed in LQT1 KCNQ1-p.A341V hiPSC-CMs or KCNQ1-p.Y315S rabbit CMs at 0.3-3 µM. CONCLUSION: A robust SGK1-Inh-induced APD shortening was observed across different LQT2 models, species, and genetic variants but less consistently in LQT1 models. This suggests a genotype- and variant-specific beneficial effect of this novel therapeutic approach in LQTS.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome do QT Longo , Animais , Humanos , Coelhos , Glucocorticoides , Canal de Potássio KCNQ1/genética , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/genética , Arritmias Cardíacas/genética , Miócitos Cardíacos/fisiologia , Potenciais de Ação/fisiologia
3.
Heart Rhythm ; 20(4): 589-595, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36610526

RESUMO

BACKGROUND: Drug-induced QT prolongation (DI-QTP) is a clinical entity in which administration of a human ether-à-go-go-related gene/rapid delayed rectifier potassium current blocker such as dofetilide prolongs the cardiac action potential duration (APD) and the QT interval on the electrocardiogram. Inhibition of serum and glucocorticoid regulated kinase-1 (SGK1) reduces the APD at 90% repolarization (APD90) in induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) derived from patients with congenital long QT syndrome. OBJECTIVE: Here, we test the efficacy of 2 novel SGK1 inhibitors-SGK1-I1 and SGK1-I2-in iPSC-CM models of dofetilide-induced APD prolongation. METHODS: Normal iPSC-CMs were treated with dofetilide to produce a DI-QTP iPSC-CM model. SGK1-I1's and SGK1-I2's therapeutic efficacy for shortening the dofetilide-induced APD90 prolongation was compared to mexiletine. The APD90 values were recorded 4 hours after treatment using a voltage-sensing dye. RESULTS: The APD90 was prolonged in normal iPSC-CMs treated with dofetilide (673 ± 8 ms vs 436 ± 4 ms; P < .0001). While 10 mM mexiletine shortened the APD90 of dofetilide-treated iPSC-CMs from 673 ± 4 to 563 ± 8 ms (46% attenuation; P < .0001), 30 nM of SGK1-I1 shortened the APD90 from 673 ± 8 to 502 ± 7 ms (72% attenuation; P < .0001). Additionally, 300 nM SGK1-I2 shortened the APD90 of dofetilide-treated iPSC-CMs from 673 ± 8 to 460 ± 7 ms (90% attenuation; P < .0001). CONCLUSION: These novel SGK1-Is substantially attenuated the pathological APD prolongation in a human heart cell model of DI-QTP. These preclinical data support the development of this therapeutic strategy to counter and neutralize DI-QTP, thereby increasing the safety profile for patients receiving drugs with torsadogenic potential.


Assuntos
Síndrome do QT Longo , Mexiletina , Humanos , Mexiletina/farmacologia , Potenciais de Ação , Síndrome do QT Longo/induzido quimicamente , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/patologia , Sulfonamidas/efeitos adversos , Miócitos Cardíacos/patologia
4.
J Physiol ; 598(11): 2137-2151, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32134496

RESUMO

KEY POINTS: The vagus nerve has been implicated in mediating behavioural effects of the gut microbiota on the central nervous system. This study examined whether the secretory products of commensal gut bacteria can modulate the excitability of vagal afferent neurons with cell bodies in nodose ganglia. Cysteine proteases from commensal bacteria increased the excitability of vagal afferent neurons via activation of protease-activated receptor 2 and modulation of the voltage dependence of Na+ conductance activation. Lipopolysaccharide, a component of the cell wall of gram-negative bacteria, increased the excitability of nodose ganglia neurons via TLR4-dependent activation of nuclear factor kappa B. Our study identified potential mechanisms by which gut microbiota influences the activity of vagal afferent pathways, which may in turn impact on autonomic reflexes and behaviour. ABSTRACT: Behavioural studies have implicated vagal afferent neurons as an important component of the microbiota-gut-brain axis. However, the mechanisms underlying the ability of the gut microbiota to affect vagal afferent pathways are unclear. We examined the effect of supernatant from a community of 33 commensal gastrointestinal bacterial derived from a healthy human donor (microbial ecosystem therapeutics; MET-1) on the excitability of mouse vagal afferent neurons. Perforated patch clamp electrophysiology was used to measure the excitability of dissociated nodose ganglion (NG) neurons. NG neuronal excitability was assayed by measuring the amount of current required to elicit an action potential, the rheobase. MET-1 supernatant increased the excitability of NG neurons by hyperpolarizing the voltage dependence of activation of Na+ conductance. The increase in excitability elicited by MET-1 supernatant was blocked by the cysteine protease inhibitor E-64 (30 nm). The protease activated receptor-2 (PAR2 ) antagonist (GB 83, 10 µm) also blocked the effect of MET-1 supernatant on NG neurons. Supernatant from Lactobacillus paracasei 6MRS, a component of MET-1, recapitulated the effect of MET-1 supernatant on NG neurons. Lastly, we compared the effects of MET-1 supernatant and lipopolysaccharide (LPS) from Escherichia coli 05:B5 on NG neuron excitability. LPS increased the excitability of NG neurons in a toll-like receptor 4 (TLR4 )-dependent and PAR2 -independent manner, whereas the excitatory effects of MET-1 supernatant were independent of TLR4 activation. Together, our findings suggest that cysteine proteases from commensal bacteria increase the excitability of vagal afferent neurons by the activation of PAR2 .


Assuntos
Microbioma Gastrointestinal , Gânglio Nodoso , Animais , Bactérias , Ecossistema , Camundongos , Neurônios , Neurônios Aferentes , Peptídeo Hidrolases , Nervo Vago
5.
Am J Physiol Gastrointest Liver Physiol ; 317(3): G363-G372, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31290688

RESUMO

The potential role of the intestinal microbiota in modulating visceral pain has received increasing attention during recent years. This has led to the identification of signaling pathways that have been implicated in communication between gut bacteria and peripheral pain pathways. In addition to the well-characterized impact of the microbiota on the immune system, which in turn affects nociceptor excitability, bacteria can modulate visceral afferent pathways by effects on enterocytes, enteroendocrine cells, and the neurons themselves. Proteases produced by bacteria, or by host cells in response to bacteria, can increase or decrease the excitability of nociceptive dorsal root ganglion (DRG) neurons depending on the receptor activated. Short-chain fatty acids generated by colonic bacteria are involved in gut-brain communication, and intracolonic short-chain fatty acids have pronociceptive effects in rodents but may be antinociceptive in humans. Gut bacteria modulate the synthesis and release of enteroendocrine cell mediators, including serotonin and glucagon-like peptide-1, which activate extrinsic afferent neurons. Deciphering the complex interactions between visceral afferent neurons and the gut microbiota may lead to the development of improved probiotic therapies for visceral pain.


Assuntos
Colo/microbiologia , Gânglios Espinais/microbiologia , Microbioma Gastrointestinal/fisiologia , Microbiota , Dor Visceral/microbiologia , Animais , Colo/fisiologia , Gânglios Espinais/fisiologia , Humanos , Microbiota/fisiologia , Neurônios Aferentes/microbiologia , Dor Visceral/terapia
6.
Am J Physiol Gastrointest Liver Physiol ; 317(3): G275-G284, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31216174

RESUMO

Increased bile acids in the colon can evoke increased epithelial secretion resulting in diarrhea, but little is known about whether colonic bile acids contribute to abdominal pain. This study aimed to investigate the mechanisms underlying activation of colonic extrinsic afferent nerves and their neuronal cell bodies by a major secondary bile acid, deoxycholic acid (DCA). All experiments were performed on male C57BL/6 mice. Afferent sensitivity was evaluated using in vitro extracellular recordings from mesenteric nerves in the proximal colon (innervated by vagal and spinal afferents) and distal colon (spinal afferents only). Neuronal excitability of cultured dorsal root ganglion (DRG) and nodose ganglion (NG) neurons was examined with perforated patch clamp. Colonic 5-HT release was assessed using ELISA, and 5-HT immunoreactive enterochromaffin (EC) cells were quantified. Intraluminal DCA increased afferent nerve firing rate concentration dependently in both proximal and distal colon. This DCA-elicited increase was significantly inhibited by a 5-HT3 antagonist in the proximal colon but not in the distal colon, which may be in part due to lower 5-HT immunoreactive EC cell density and lower 5-HT levels in the distal colon following DCA stimulation. DCA increased the excitability of DRG neurons, whereas it decreased the excitability of NG neurons. DCA potentiated mechanosensitivity of high-threshold spinal afferents independent of 5-HT release. Together, this study suggests that DCA can excite colonic afferents via direct and indirect mechanisms but the predominant mechanism may differ between vagal and spinal afferents. Furthermore, DCA increased mechanosensitivity of high-threshold spinal afferents and may be a mechanism of visceral hypersensitivity.NEW & NOTEWORTHY Deoxycholic acid (DCA) directly excites spinal afferents and, to a lesser extent, indirectly via mucosal 5-HT release. DCA potentiates mechanosensitivity of high-threshold spinal afferents independent of 5-HT release. DCA increases vagal afferent firing in proximal colon via 5-HT release but directly inhibits the excitability of their cell bodies.


Assuntos
Vias Aferentes/efeitos dos fármacos , Colo/efeitos dos fármacos , Ácido Desoxicólico/farmacologia , Receptores 5-HT3 de Serotonina/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Gânglio Nodoso/efeitos dos fármacos , Sistema Nervoso Periférico/efeitos dos fármacos , Serotonina/metabolismo
7.
J Neurosci ; 37(48): 11758-11768, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29089436

RESUMO

Peripheral pain signaling reflects a balance of pronociceptive and antinociceptive influences; the contribution by the gastrointestinal microbiota to this balance has received little attention. Disorders, such as inflammatory bowel disease and irritable bowel syndrome, are associated with exaggerated visceral nociceptive actions that may involve altered microbial signaling, particularly given the evidence for bacterial dysbiosis. Thus, we tested whether a community of commensal gastrointestinal bacteria derived from a healthy human donor (microbial ecosystem therapeutics; MET-1) can affect the excitability of male mouse DRG neurons. MET-1 reduced the excitability of DRG neurons by significantly increasing rheobase, decreasing responses to capsaicin (2 µm) and reducing action potential discharge from colonic afferent nerves. The increase in rheobase was accompanied by an increase in the amplitude of voltage-gated K+ currents. A mixture of bacterial protease inhibitors abrogated the effect of MET-1 effects on DRG neuron rheobase. A serine protease inhibitor but not inhibitors of cysteine proteases, acid proteases, metalloproteases, or aminopeptidases abolished the effects of MET-1. The serine protease cathepsin G recapitulated the effects of MET-1 on DRG neurons. Inhibition of protease-activated receptor-4 (PAR-4), but not PAR-2, blocked the effects of MET-1. Furthermore, Faecalibacterium prausnitzii recapitulated the effects of MET-1 on excitability of DRG neurons. We conclude that serine proteases derived from commensal bacteria can directly impact the excitability of DRG neurons, through PAR-4 activation. The ability of microbiota-neuronal interactions to modulate afferent signaling suggests that therapies that induce or correct microbial dysbiosis may impact visceral pain.SIGNIFICANCE STATEMENT Commercially available probiotics have the potential to modify visceral pain. Here we show that secretory products from gastrointestinal microbiota derived from a human donor signal to DRG neurons. Their secretory products contain serine proteases that suppress excitability via activation of protease-activated receptor-4. Moreover, from this community of commensal microbes, Faecalibacterium prausnitzii strain 16-6-I 40 fastidious anaerobe agar had the greatest effect. Our study suggests that therapies that induce or correct microbial dysbiosis may affect the excitability of primary afferent neurons, many of which are nociceptive. Furthermore, identification of the bacterial strains capable of suppressing sensory neuron excitability, and their mechanisms of action, may allow therapeutic relief for patients with gastrointestinal diseases associated with pain.


Assuntos
Gânglios Espinais/enzimologia , Microbioma Gastrointestinal/fisiologia , Granzimas/administração & dosagem , Neurônios/enzimologia , Simbiose/fisiologia , Animais , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/microbiologia , Peptídeo Hidrolases/administração & dosagem , Simbiose/efeitos dos fármacos
8.
Am J Physiol Gastrointest Liver Physiol ; 312(3): G165-G170, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28082285

RESUMO

Altered gastrointestinal (GI) function contributes to the debilitating symptoms of inflammatory bowel diseases (IBD). Nerve circuits contained within the gut wall and outside of the gut play important roles in modulating motility, mucosal fluid transport, and blood flow. The structure and function of these neuronal populations change during IBD. Superimposed on this plasticity is a diminished responsiveness of effector cells - smooth muscle cells, enterocytes, and vascular endothelial cells - to neurotransmitters. The net result is a breakdown in the precisely orchestrated coordination of motility, fluid secretion, and GI blood flow required for health. In this review, we consider how inflammation-induced changes to the effector innervation of these tissues, and changes to the tissues themselves, contribute to defective GI function in models of IBD. We also explore the evidence that reversing neuronal plasticity is sufficient to normalize function during IBD.


Assuntos
Sistema Nervoso Entérico/fisiopatologia , Doenças Inflamatórias Intestinais/fisiopatologia , Intestinos/fisiopatologia , Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologia , Animais , Humanos , Neurônios/fisiologia
9.
Eur J Pharmacol ; 762: 313-21, 2015 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-26057691

RESUMO

Itch is an unpleasant sensation that evokes a desire to scratch. Although often regarded as a trivial 'alarming' sensation, itch may be debilitating and exhausting, leading to reduction in quality of life. In the current study, the question of whether caffeic acid can be used to alleviate itch sensation induced by various pruritic agents, including histamine, chloroquine, SLIGRL-NH2, and ß-alanine was investigated. It turned out that histamine-induced intracellular calcium increase was significantly blocked by caffeic acid in HEK293T cells that express H1R and TRPV1, molecules required for transmission of histamine-induced itch in sensory neurons. In addition, inhibition of histamine-induced intracellular calcium increase by caffeic acid was demonstrated in primary cultures of mouse dorsal root ganglion (DRG). When chloroquine, an anti-malaria agent known to induce histamine-independent itch - was used, it was also found that caffeic acid inhibits the induced response in both DRG and HEK293T cells that express MRGPRA3 and TRPA1, underlying molecular entities responsible for chloroquine-mediated itch. Likewise, intracellular calcium changes by SLIGRL-NH2 - an itch-inducing agent via PAR2 and MRGPRC11 - were decreased by caffeic acid as well. However, it was found that caffeic acid is not capable of inhibiting ß-alanine-induced responses via its specific receptor MRGPRD. Finally, in vivo scratching behavior tests showed that caffeic acid indeed has anti-scratching effects against histamine, chloroquine, and SLIGRL-NH2 administration but not by ß-alanine. Overall, the current study demonstrated that caffeic acid has anti-itch effects by inhibition of multiple itch mechanisms induced by histamine, chloroquine and SLIGRL-NH2.


Assuntos
Ácidos Cafeicos/farmacologia , Prurido/tratamento farmacológico , Prurido/patologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Ácidos Cafeicos/uso terapêutico , Cloroquina/farmacologia , Células HEK293 , Histamina/farmacologia , Humanos , Mentol/farmacologia , Camundongos , Oligopeptídeos/farmacologia , Prurido/induzido quimicamente , Prurido/metabolismo , Receptor PAR-2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Histamínicos H1/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPV/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA