Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Brain Struct Funct ; 229(6): 1327-1348, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38710874

RESUMO

Children often show cognitive and affective traits that are similar to their parents. Although this indicates a transmission of phenotypes from parents to children, little is known about the neural underpinnings of that transmission. Here, we provide a general overview of neuroimaging studies that explore the similarity between parents and children in terms of brain structure and function. We notably discuss the aims, designs, and methods of these so-called intergenerational neuroimaging studies, focusing on two main designs: the parent-child design and the multigenerational design. For each design, we also summarize the major findings, identify the sources of variability between studies, and highlight some limitations and future directions. We argue that the lack of consensus in defining the parent-child transmission of brain structure and function leads to measurement heterogeneity, which is a challenge for future studies. Additionally, multigenerational studies often use measures of family resemblance to estimate the proportion of variance attributed to genetic versus environmental factors, though this estimate is likely inflated given the frequent lack of control for shared environment. Nonetheless, intergenerational neuroimaging studies may still have both clinical and theoretical relevance, not because they currently inform about the etiology of neuromarkers, but rather because they may help identify neuromarkers and test hypotheses about neuromarkers coming from more standard neuroimaging designs.


Assuntos
Encéfalo , Neuroimagem , Humanos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Neuroimagem/métodos , Criança , Fenótipo , Pais
2.
Psychon Bull Rev ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565841

RESUMO

We review the evidence for the conceptual association between arithmetic and space and quantify the effect size in meta-analyses. We focus on three effects: (a) the operational momentum effect (OME), which has been defined as participants' tendency to overestimate results of addition problems and underestimate results of subtraction problems; (b) the arithmetic cueing effect, in which arithmetic problems serve as spatial cues in target detection or temporal order judgment tasks; and (c) the associations between arithmetic and space observed with eye- and hand-tracking studies. The OME was consistently found in paradigms that provided the participants with numerical response alternatives. The OME shows a large effect size, driven by an underestimation during subtraction while addition was unbiased. In contrast, paradigms in which participants indicated their estimate by transcoding their final estimate to a spatial reference frame revealed no consistent OME. Arithmetic cueing studies show a reliable small to medium effect size, driven by a rightward bias for addition. Finally, eye- and hand-tracking studies point to replicable associations between arithmetic and eye or hand movements. To account for the complexity of the observed pattern, we introduce the Adaptive Pathways in Mental Arithmetic (APiMA) framework. The model accommodates central notions of numerical and arithmetic processing and helps identifying which pathway a given paradigm operates on. It proposes that the divergence between OME and arithmetic cueing studies comes from the predominant use of non-symbolic versus symbolic stimuli, respectively. Overall, our review and findings clearly support an association between arithmetic and spatial processing.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38168718

RESUMO

Correctly assessing children's theory of mind (TOM) is essential to clinical practice. Yet, most tasks heavily rely on language, which is an obstacle for several populations. Langdon and Coltheart's (Cognition 71(1):43-71, 1999) Picture Sequencing Task (PST), developed for research purposes, avoids this limitation through a minimally-verbal procedure. We thus developed a tablet adaptation of this task for individual application, engaging children's motivation and allowing response times collection. To assess this tablet-PST, we first tested a large sample of neurotypical children (6-11 years-old, N = 248), whose results confirmed the task's structural and content validity, and permitted the construction of three standardized clinical indices. In a second experiment, we applied those to previously diagnosed autistic children (N = 23), who were expected to show atypical TOM performance. Children's outcomes were consistent with what was hypothesized and confirmed the task's external validity and moderate clinical sensitivity. The tablet-PST thus appears as a suitable tool, providing detailed profiles to inform clinical decisions.

4.
NPJ Sci Learn ; 8(1): 56, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065992

RESUMO

There are large individual differences in arithmetic skills. Although a number of brain-wide association studies have attempted to identify the neural correlates of these individual differences, studies have focused on relatively small sample sizes and have yielded inconsistent results. In the current voxel-based morphometry study, we merged six structural imaging datasets of children and adolescents (from 7.5 to 15 years) whose levels of arithmetic skills were assessed, leading to a combined sample of n = 536. Controlling for individual differences in age, gender, as well as language, and intelligence, we found a unique positive relation between arithmetic skill and gray matter volume in the left inferior frontal gyrus (IFG) and middle temporal gyrus (MTG). Our results suggest that individual differences in arithmetic skills are associated with structural differences in left fronto-temporal areas, rather than in regions of the parietal cortex and hippocampus that are often associated with arithmetic processing.

5.
Dev Cogn Neurosci ; 64: 101310, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37806070

RESUMO

Cognitive development is often thought to depend on qualitative changes in problem-solving strategies, with early developing algorithmic procedures (e.g., counting when adding numbers) considered being replaced by retrieval of associations (e.g., between operands and answers of addition problems) in adults. However, algorithmic procedures might also become automatized with practice. In a large cross-sectional fMRI study from age 8 to adulthood (n = 128), we evaluate this hypothesis by measuring neural changes associated with age-related reductions in a behavioral hallmark of mental addition, the problem-size effect (an increase in solving time as problem sum increases). We found that age-related decreases in problem-size effect were paralleled by age-related increases of activity in a region of the intraparietal sulcus that already supported the problem-size effect in 8- to 9-year-olds, at an age the effect is at least partly due to explicit counting. This developmental effect, which was also observed in the basal ganglia and prefrontal cortex, was restricted to problems with operands ≤ 4. These findings are consistent with a model positing that very-small arithmetic problems-and not larger problems-might rely on an automatization of counting procedures rather than a shift towards retrieval, and suggest a neural automatization of procedural knowledge during cognitive development.


Assuntos
Encéfalo , Conceitos Matemáticos , Adulto , Humanos , Criança , Encéfalo/fisiologia , Estudos Transversais , Resolução de Problemas/fisiologia , Cognição
6.
Behav Sci (Basel) ; 13(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37622787

RESUMO

Reaction time (RT) is a critical measure of performance, and studying its distribution at the group or individual level provides useful information on the cognitive processes or strategies used to perform a task. In a previous study measuring RT in children and adults asked to compare two successive stimuli (quantities or words), we discovered that the group RT distribution was bimodal, with some subjects responding with a mean RT of around 1100 ms and others with a mean RT of around 500 ms. This bimodal distribution suggested two distinct response strategies, one reactive, the other anticipatory. In the present study, we tested whether subjects' segregation into fast and slow responders (1) extended to other sequential comparative judgments (2) evolved from age 8 to adulthood, (3) could be linked to anticipation as assessed using computer modeling (4) stemmed from individual-specific strategies amenable to instruction. To test the first three predictions, we conducted a distributional and theoretical analysis of the RT of 158 subjects tested earlier using four different sequential comparative judgment tasks (numerosity, phonological, multiplication, subtraction). Group RT distributions were bimodal in all tasks, with the two strategies differing in speed and sometimes accuracy too. The fast strategy, which was rare or absent in 8- to 9-year-olds, steadily increased through childhood. Its frequency in adolescence remained, however, lower than in adulthood. A mixture model confirmed this developmental evolution, while a diffusion model corroborated the idea that the difference between the two strategies concerns anticipatory processes preceding decision processes. To test the fourth prediction, we conducted an online experiment where 236 participants made numerosity comparisons before and after an instruction favoring either reactive or anticipatory responses. The results provide out-of-the-lab evidence of the bimodal RT distribution associated with sequential comparisons and demonstrated that the proportions of fast vs. slow responders can be modulated simply by asking subjects to anticipate or not the future result of the comparison. Although anticipation of the future is as important for cognition as memory of the past, its evolution after the first year of life is much more poorly known. The present study is a step toward meeting this challenge. It also illustrates how analyzing individual RT distributions in addition to group RT distributions and using computational models can improve the assessment of decision making cognitive processes.

7.
J Exp Child Psychol ; 234: 105710, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37285761

RESUMO

In an experiment, 98 children aged 8 to 9, 10 to 12, and 13 to 15 years solved addition problems with a sum up to 10. In another experiment, the same children solved the same calculations within a sign priming paradigm where half the additions were displayed with the "+" sign 150 ms before the addends. Therefore, size effects and priming effects could be considered conjointly within the same populations. Our analyses revealed that small problems, constructed with addends from 1 to 4, presented a linear increase of solution times as a function of problem sums (i.e., size effect) in all age groups. However, an operator priming effect (i.e., facilitation of the solving process with the anticipated presentation of the "+" sign) was observed only in the group of oldest children. These results support the idea that children use a counting procedure that becomes automatized (as revealed by the priming effect) around 13 years of age. For larger problems and whatever the age group, no size or priming effects were observed, suggesting that the answers to these problems were already retrieved from memory at 8 to 9 years of age. For this specific category of large problems, negative slopes in solution times demonstrate that retrieval starts from the largest problems during development. These results are discussed in light of a horse race model in which procedures can win over retrieval.


Assuntos
Conceitos Matemáticos , Resolução de Problemas , Humanos , Criança , Animais , Cavalos , Memória
8.
Neuroimage ; 277: 120247, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37385049

RESUMO

There is ample behavioral evidence that others' mere presence can affect any behavior in human and non-human animals, generally facilitating the expression of mastered responses while impairing the acquisition of novel ones. Much less is known about i) how the brain orchestrates the modulation of such a wide array of behaviors by others' presence and ii) when these neural underpinnings mature during development. To address these issues, fMRI data were collected in children and adults alternately observed and unobserved by a familiar peer. Subjects performed a numerosity comparison task and a phonological comparison task. While the former involves number-processing brain areas, the latter involves language-processing areas. Consistent with previous behavioral findings, adults' and children's performance improved in both tasks when observed by a peer. Across all participants, task-specific brain regions showed no reliable change in activity under peer observation. Rather, we found task-independent changes in domain-general brain regions typically involved in mentalizing, reward, and attention. Bayesian analyses singled out the attention network as the exception to the close child-adult resemblance of peer observation neural substrates. These findings suggest that i) social facilitation of some human education-related skills is primarily orchestrated by domain-general brain networks, rather than by task-selective substrates, and ii) apart from attention, peer presence neural processing is largely mature in children.


Assuntos
Encéfalo , Cognição , Animais , Adulto , Humanos , Teorema de Bayes , Cognição/fisiologia , Encéfalo/fisiologia , Mapeamento Encefálico , Idioma , Imageamento por Ressonância Magnética
9.
PLoS Biol ; 21(1): e3001935, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603025

RESUMO

Number symbols, such as Arabic numerals, are cultural inventions that have transformed human mathematical skills. Although their acquisition is at the core of early elementary education in children, it remains unknown how the neural representations of numerals emerge during that period. It is also unclear whether these relate to an ontogenetically earlier sense of approximate quantity. Here, we used multivariate fMRI adaptation coupled with within- and between-format machine learning to probe the cortical representations of Arabic numerals and approximate nonsymbolic quantity in 89 children either at the beginning (age 5) or four years into formal education (age 8). Although the cortical representations of both numerals and nonsymbolic quantities expanded from age 5 to age 8, these representations also segregated with learning and development. Specifically, a format-independent neural representation of quantity was found in the right parietal cortex, but only for 5-year-olds. These results are consistent with the so-called symbolic estrangement hypothesis, which argues that the relation between symbolic and nonsymbolic quantity weakens with exposure to formal mathematics in children.


Assuntos
Desenvolvimento Infantil , Lobo Parietal , Humanos , Criança , Pré-Escolar , Matemática , Adaptação Fisiológica , Imageamento por Ressonância Magnética
10.
Heliyon ; 8(4): e09294, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35464713

RESUMO

The COVID-19 crisis in 2020 led to exceptional measures to contain the spread of the virus. In France as in many countries around the world, the government ordered a lockdown with school closure for several weeks. A growing number of studies suggest that family socio-economic status might be an important predictor of how families adapted to homeschooling during lockdown. However, socio-economic status is a distal factor that does not necessarily inform on the specific characteristics of the home learning environment that may more directly influence parental adaptation to homeschooling during lockdown. Here we aimed to examine how parental adaptation to homeschooling during lockdown was influenced by prior parental attitudes and expectations towards academic learning, as well as prior familiarity with literacy and numeracy activities at home. The present study involves 52 families who participated in a study about the home learning environment in 2018. At that time, parents completed an extensive questionnaire assessing their beliefs and attitudes towards academic learning and the frequency of literacy and numeracy activities are home. At the end of the first 2020 French lockdown, we again asked the same parents to complete a questionnaire, this time assessing homeschooling conditions during lockdown as well as parental confidence towards academic domains. Over and above a range of background variables, correlation analyses revealed that parental expectations towards academic learning as well as frequency of prior shared activities were related to daily homeschooling time during lockdown. Both parental attitudes and expectations towards numeracy and literacy were also related to parental confidence in homeschooling. Our results suggest that several aspects of the home learning environment may have influenced how families adapted to homeschooling during the 2020 COVID lockdown.

11.
Cereb Cortex ; 32(21): 4733-4745, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-35134134

RESUMO

Humans differ from other animal species in their unique ability to use symbols to represent numerical information. This ability is thought to emerge from the "neural recycling" of mechanisms supporting nonsymbolic magnitudes in the intraparietal sulcus (IPS), a hypothesis that has been applied to both absolute magnitudes (e.g., whole numbers) and relative magnitudes (e.g., fractions). Yet, evidence for the neuronal recycling hypothesis is inconsistent for absolute magnitudes and scarce for relative magnitudes. Here, we investigated to what extent the neural representations of absolute and relative magnitudes in symbolic and nonsymbolic formats overlap in the IPS. In a functional magnetic resonance imaging (fMRI) adaptation design, 48 adult participants were sequentially presented with lines, whole numbers, line ratios, and fractions that varied (vs. not varied) in magnitudes. Univariate analyses showed that the extent to which IPS mechanisms associated with whole numbers relied on mechanisms associated with lines depended upon participants' arithmetic fluency. Multivariate analyses revealed that the right IPS encoded differences in format (nonsymbolic vs. symbolic) across both absolute and relative magnitudes. Therefore, IPS activity associated with magnitude processing may depend on the presentation format (nonsymbolic vs. symbolic) more than it depends on the type of magnitude (absolute vs. relative), at least for most adult participants.


Assuntos
Imageamento por Ressonância Magnética , Lobo Parietal , Adulto , Humanos , Matemática , Lobo Parietal/fisiologia
12.
Psychol Sci ; 33(2): 196-211, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35108141

RESUMO

Disparities in home numeracy environments contribute to variations in children's mathematical skills. However, the neural mechanisms underlying the relation between home numeracy experiences and mathematical learning are unknown. Here, parents of 66 eight-year-olds completed a questionnaire assessing the frequency of home numeracy practices. Neural adaptation to the repetition of Arabic numerals and words was measured in children using functional MRI (n = 50) to assess how sensitive the brain is to the presentation of numerical and nonnumerical information. Disparities in home numeracy practices were related to differences in digit (but not word) processing in a region of the left intraparietal sulcus (IPS) that was also related to children's arithmetic fluency. Furthermore, digit-related processing in the IPS influenced the relation between home numeracy practices and arithmetic fluency. Results were consistent with a model hypothesizing that home numeracy practices may affect children's mathematical skills by modulating the IPS response to symbolic numerical information.


Assuntos
Relações Pais-Filho , Pais , Criança , Humanos , Aprendizagem/fisiologia , Matemática , Lobo Parietal/diagnóstico por imagem
13.
NPJ Sci Learn ; 6(1): 34, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34862413

RESUMO

Previous studies indicate that children are exposed to different literacy experiences at home. Although these disparities have been shown to affect children's literacy skills, it remains unclear whether and how home literacy practices influence brain activity underlying word-level reading. In the present study, we asked parents of French children from various socioeconomic backgrounds (n = 66; 8.46 ± 0.36 years, range 7.52-9.22; 20 girls) to report the frequency of home literacy practices. Neural adaptation to the repetition of printed words was then measured using functional magnetic resonance imaging (fMRI) in a subset of these children (n = 44; 8.49 ± 0.33 years, range 8.02-9.14; 13 girls), thereby assessing how sensitive was the brain to the repeated presentation of these words. We found that more frequent home literacy practices were associated with enhanced word adaptation in the left posterior inferior frontal sulcus (r = 0.32). We also found that the frequency of home literacy practices was associated with children's vocabulary skill (r = 0.25), which itself influenced the relation between home literacy practices and neural adaptation to words. Finally, none of these effects were observed in a digit adaptation task, highlighting their specificity to word recognition. These findings are consistent with a model positing that home literacy experiences may improve children's vocabulary skill, which in turn may influence the neural mechanisms supporting word-level reading.

14.
PLoS One ; 16(9): e0255400, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34543301

RESUMO

A growing number of studies suggest that the frequency of numeracy experiences that parents provide at home may relate to children's mathematical development. However, the relation between home numeracy practices and children's numerical skills is complex and might depend upon both the type and difficulty of activities, as well as the type of math skills. Studies have also argued that this relation may be driven by factors that are not systematically controlled for in the literature, including socio-economic status (SES), parental math skills and children's IQ. Finally, as most prior studies have focused on preschoolers, it remains unclear to what extent there remains a relation between the home numeracy environment and math skills when children are in elementary school. In the present study, we tested an extensive range of math skills in 66 8-year-olds, including non-symbolic quantity processing, symbolic number understanding, transcoding, counting, and mental arithmetic. We also asked parents to complete a questionnaire about their SES, academic expectations, academic attitudes, and the numeracy practices that they provide at home. Finally, we measured their arithmetic fluency as a proxy for parental math skills. Over and above differences in socio-economic status, parental arithmetic fluency, child's IQ, and time spent with the child, we found a positive relation between the frequency of formal numeracy practices that were at or above grade level and two separate measures of mental arithmetic. We further found that the frequency of these advanced formal numeracy practices was related to parents' academic expectations. Therefore, our study shows that home numeracy experiences predict arithmetic skills in elementary school children, but only when those activities are formal and sufficiently challenging for children.


Assuntos
Aprendizagem/fisiologia , Matemática/educação , Relações Pais-Filho , Pais/psicologia , Atitude , Criança , Feminino , Humanos , Masculino , Inquéritos e Questionários
15.
Biology (Basel) ; 10(9)2021 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-34571779

RESUMO

Little is known about how peers' mere presence may, in itself, affect academic learning and achievement. The present study addresses this issue by exploring whether and how the presence of a familiar peer affects performance in a task assessing basic numeracy and literacy skills: numerosity and phonological comparisons. We tested 99 fourth-graders either alone or with a classmate. Ninety-seven college-aged young adults were also tested on the same task, either alone or with a familiar peer. Peer presence yielded a reaction time (RT) speedup in children, and this social facilitation was at least as important as that seen in adults. RT distribution analyses indicated that the presence of a familiar peer promotes the emergence of adult-like features in children. This included shorter and less variable reaction times (confirmed by an ex-Gaussian analysis), increased use of an optimal response strategy, and, based on Ratcliff's diffusion model, speeded up nondecision (memory and/or motor) processes. Peer presence thus allowed children to at least narrow (for demanding phonological comparisons), and at best, virtually fill in (for unchallenging numerosity comparisons) the developmental gap separating them from adult levels of performance. These findings confirm the influence of peer presence on skills relevant to education and lay the groundwork for exploring how the brain mechanisms mediating this fundamental social influence evolve during development.

16.
Hum Brain Mapp ; 42(11): 3396-3410, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33978281

RESUMO

The neurocognitive basis of elementary academic skills varies with parental socioeconomic status (SES). Little is known, however, about SES-related differences underlying higher-order cognitive skills that are critical for school success, such as reasoning. Here we used fMRI to examine how the neurocognitive basis of deductive reasoning varies as a function of parental education in school-aged children. Higher parental education was associated with greater reliance on the left inferior frontal gyrus when solving set-inclusion problems, consistent with other work suggesting that these problems might more heavily rely on verbal systems in the brain. In addition, children who are at the lower end of the parental education continuum, but have higher nonverbal skills relied on right parietal areas to a greater degree than their peers for solving set-inclusion problems. Finally, lower parental education children with higher verbal or nonverbal skill engaged dorsolateral prefrontal regions to a greater degree for set-inclusion and linear-order relations than their peers. These findings suggest that children with lower parental education rely on spatial and cognitive control mechanisms to achieve parity with their peers with parents who have more education. Better understanding variability in the neurocognitive networks that children recruit as a function of their parental factors might benefit future individualized interventions that best match children's characteristics.


Assuntos
Escolaridade , Rede Nervosa/fisiologia , Pais , Lobo Parietal/fisiologia , Córtex Pré-Frontal/fisiologia , Resolução de Problemas/fisiologia , Adolescente , Criança , Feminino , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Lobo Parietal/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Classe Social
17.
Child Dev ; 92(5): 2069-2088, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33932226

RESUMO

Previous research on Montessori preschool education is inconsistent and prone to analytic flexibility. In this preregistered study, disadvantaged preschoolers in a French public school were randomly assigned to either conventional or Montessori classrooms, with the latter being adapted to French public education. Adaptations included fewer materials, shorter work periods, and relatively limited Montessori teacher training. Cross-sectional analyses in kindergarten (N = 176; Mage  = 5-6) and longitudinal analyses over the 3 years of preschool (N = 70; Mage  = 3-6) showed that the adapted Montessori curriculum was associated with outcomes comparable to the conventional curriculum on math, executive functions, and social skills. However, disadvantaged kindergarteners from Montessori classrooms outperformed their peers on reading (d = 0.68). This performance was comparable to that of advantaged children from an accredited Montessori preschool.


Assuntos
Mudança Social , Populações Vulneráveis , Criança , Pré-Escolar , Cognição , Estudos Transversais , Humanos , Instituições Acadêmicas
18.
Br J Dev Psychol ; 39(3): 380-392, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33428288

RESUMO

In this research, 10- to 12- and 13- to 15-year-old children were presented with very simple addition and multiplication problems involving operands from 1 to 4. Critically, the arithmetic sign was presented before the operands in half of the trials, whereas it was presented at the same time as the operands in the other half. Our results indicate that presenting the 'x' sign before the operands of a multiplication problem does not speed up the solving process, irrespective of the age of children. In contrast, presenting the '+' sign before the operands of an addition problem facilitates the solving process, but only in 13 to 15-year-old children. Such priming effects of the arithmetic sign have been previously interpreted as the result of a pre-activation of an automated counting procedure, which can be applied as soon as the operands are presented. Therefore, our results echo previous conclusions of the literature that simple additions but not multiplications can be solved by fast counting procedures. More importantly, we show here that these procedures are possibly convoked automatically by children after the age of 13 years. At a more theoretical level, our results do not support the theory that simple additions are solved through retrieval of the answers from long-term memory by experts. Rather, the development of expertise for mental addition would consist in an acceleration of procedures until automatization.


Assuntos
Atividade Motora , Resolução de Problemas , Adolescente , Criança , Humanos , Matemática
19.
Data Brief ; 33: 106405, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33134440

RESUMO

Here we describe "Brain development of deductive reasoning" a pediatric neuroimaging dataset freely available on OpenNeuro.org. This dataset includes neuroimaging and standardized assessment data from 56 participants aged 8.47-15 years. Functional Magnetic Resonance Imaging (fMRI) data were collected while participants completed both set-inclusion and linear-order deductive reasoning tasks. A subset of participants (n=45) returned two years later for follow-up standardized assessment testing allowing for future research to investigate individual change in cognitive and academic skill. Previous research on this dataset has not examined the relation of skill and demographic measures to the neural basis of reasoning. Moreover, these studies have not examined the relation of the neural basis of reasoning to that of arithmetic or differences between children and adults in the neural basis of reasoning. Therefore, there are many opportunities to extend the research in the published reports on this data.

20.
Ann N Y Acad Sci ; 1477(1): 79-90, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32812246

RESUMO

Solving single-digit subtraction and addition problems is associated with left and right shifts of attention in adults. Here, we explored the development of these spatial shifts in children from the third to fifth grade. In two experiments, children solved single-digit addition (Experiments 1 and 2), subtraction (Experiment 1), and multiplication (Experiment 2) problems in which operands and the arithmetic sign were shown sequentially. Although the first operand and the arithmetic sign were presented on the center of a screen, the second operand was presented either in the left or the right visual field. In Experiment 1, we found that subtraction problems were increasingly associated with a leftward bias by the fifth grade, such that problem solving was facilitated when the second operand was in the left visual field. In Experiment 2, we found that children can also associate addition problems with the right side of space by the fourth grade. No developmental increase in either leftward or rightward bias was observed for multiplication problems. These attentional shifts might be due to the increasing reliance on calculation procedures that involve mental movements to the left or right of a sequential representation of numbers during subtraction and addition.


Assuntos
Atenção/fisiologia , Aprendizagem/fisiologia , Matemática , Percepção Espacial/fisiologia , Adolescente , Criança , Feminino , Humanos , Masculino , Tempo de Reação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA