Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Neurobiol Aging ; 110: 13-26, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34844076

RESUMO

At the neuromuscular junction (NMJ), changes to the size of the postsynaptic potential induce homeostatic compensation. At the Drosophila NMJ, increased glutamate release causes a compensatory decrease in quantal content, but it is unknown if this mechanism operates at the cholinergic mammalian NMJ. We addressed this question by recording endplate potentials (EPP) and muscle contraction in 3-month and 24-month ChAT-ChR2-EYFP mice that overexpress vesicular acetylcholine transporter and release more acetylcholine per vesicle. At 3 months, the quantal content of EPPs from ChAT-ChR2-EYFP mice were not different from WT controls, however tetanic depression was greater, and quantal size during high-frequency stimulation and the size of the readily releasable pool (RRP) were decreased. At 24 months of age, quantal content was reduced in ChAT-ChR2-EYFP mice, which normalized synaptic depression despite smaller RRP. The effect of pancuronium on indirect evoked muscle twitch was not different between groups. These results indicate that an increase in the amount of acetylcholine per vesicle induces two distinct age-dependent homeostatic mechanisms compensating excessive acetylcholine release.


Assuntos
Acetilcolina/metabolismo , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Homeostase/fisiologia , Junção Neuromuscular/metabolismo , Transmissão Sináptica/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Expressão Gênica , Camundongos , Contração Muscular/fisiologia , Potenciais Sinápticos/fisiologia , Proteínas Vesiculares de Transporte de Acetilcolina/genética , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
2.
Braz. j. med. biol. res ; 46(10): 844-854, 24/set. 2013. graf
Artigo em Inglês | LILACS | ID: lil-688554

RESUMO

Impaired cholinergic neurotransmission can affect memory formation and influence sleep-wake cycles (SWC). In the present study, we describe the SWC in mice with a deficient vesicular acetylcholine transporter (VAChT) system, previously characterized as presenting reduced acetylcholine release and cognitive and behavioral dysfunctions. Continuous, chronic ECoG and EMG recordings were used to evaluate the SWC pattern during light and dark phases in VAChT knockdown heterozygous (VAChT-KDHET, n=7) and wild-type (WT, n=7) mice. SWC were evaluated for sleep efficiency, total amount and mean duration of slow-wave, intermediate and paradoxical sleep, as well as the number of awakenings from sleep. After recording SWC, contextual fear-conditioning tests were used as an acetylcholine-dependent learning paradigm. The results showed that sleep efficiency in VAChT-KDHET animals was similar to that of WT mice, but that the SWC was more fragmented. Fragmentation was characterized by an increase in the number of awakenings, mainly during intermediate sleep. VAChT-KDHET animals performed poorly in the contextual fear-conditioning paradigm (mean freezing time: 34.4±3.1 and 44.5±3.3 s for WT and VAChT-KDHET animals, respectively), which was followed by a 45% reduction in the number of paradoxical sleep episodes after the training session. Taken together, the results show that reduced cholinergic transmission led to sleep fragmentation and learning impairment. We discuss the results on the basis of cholinergic plasticity and its relevance to sleep homeostasis. We suggest that VAChT-KDHET mice could be a useful model to test cholinergic drugs used to treat sleep dysfunction in neurodegenerative disorders.


Assuntos
Animais , Masculino , Camundongos , Comportamento Animal/fisiologia , Colinérgicos/metabolismo , Aprendizagem em Labirinto/fisiologia , Fases do Sono/fisiologia , Transmissão Sináptica/fisiologia , Vigília/fisiologia , Camundongos Knockout , Modelos Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA