Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 442: 138414, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38237299

RESUMO

Based on the findings of our previous studies, a comprehensive comparative investigation of the quality and formation mechanism of gels obtained from protein self-assemblies induced by different methods is necessary. Self-assembled heat-induced gels had higher gel mechanical strength, and hydrophobic interactions played a greater role. Whether or not heat treatment was used to induce gel formation may play a more important role than the effect of divalent cations on gel formation. Hydrogen bonds played an important role in all gels formed using different gelation methods. Furthermore, Self-assembled cold-induced gels were considered to can load bioactive substances with different hydrophilicity properties due to the high water-holding capacity and the smooth, dense microstructure. Therefore, ß-lactoglobulin fibrous and worm-like self-assembled cold-induced gels as a delivery material for hydrophilic bioactive substances (epigallocatechin gallate, vitamin B2) and amphiphilic bioactive substance (naringenin), with good encapsulation efficiency (91.92 %, 97.08 %, 96.72 %, 96.52 %, 98.94 %, 97.41 %, respectively) and slow-release performance.


Assuntos
Lactoglobulinas , Água , Lactoglobulinas/química , Água/química , Géis/química , Temperatura Alta
2.
Foods ; 12(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37174380

RESUMO

The contradiction between the growing demand from consumers for "nutrition & personalized" food and traditional industrialized food production has consistently been a problem in the elderly diet that researchers face and discuss. Three-dimensional (3D) food printing could potentially offer a solution to this problem. This article reviews the recent research on 3D food printing, mainly including the use of different sources of protein to improve the performance of food ink printing, high internal phase emulsion or oleogels as a fat replacement and nutrition delivery system, and functional active ingredients and the nutrition delivery system. In our opinion, 3D food printing is crucial for improving the appetite and dietary intake of the elderly. The critical obstacles of 3D-printed food for the elderly regarding energy supplements, nutrition balance, and even the customization of the recipe in a meal are discussed in this paper. By combining big data and artificial intelligence technology with 3D food printing, comprehensive, personalized, and customized geriatric foods, according to the individual traits of each elderly consumer, will be realized via food raw materials-appearance-processing methods. This article provides a theoretical basis and development direction for future 3D food printing for the elderly.

3.
Food Res Int ; 167: 112661, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37087248

RESUMO

The primary additive manufacturing (AM) technique for all high-viscosity food composites is extrusion-based. Therefore, understanding the impact of process parameters involved is crucial in fulfilling the demand characteristics of the printed constructs. In this regard, a correlation between print accuracy and critical 3D printing (3DP) process variables as a strategy for expediting the selection of 3D printable food inks has the most potential for success. This paper studies the effectiveness of using heat-acid coagulated milk semisolids and polyol matrix as 3D printable food ink for high-quality prints. The study focused on the critical material properties and conducted rheological characterization and particle size distribution analysis. The study obtained the effective range of printing parameters for various process variables using a mathematical model that employed finite element analysis (FEA) to define the flow field characteristics. The dimensional accuracy of the printed constructs under different process variables was determined by utilizing image processing methods. A multi-objective optimization was carried out using the desirability function method to obtain the key correlations between the process parameters for the best-printed construct.


Assuntos
Temperatura Alta , Leite , Animais , Polímeros , Impressão Tridimensional
4.
Food Microbiol ; 112: 104243, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36906309

RESUMO

Fermentation of plant-based milk alternatives (PBMAs), including nut-based products, has the potential to generate new foods with improved sensorial properties. In this study, we screened 593 lactic acid bacteria (LAB) isolates from herbs, fruits and vegetables for their ability to acidify an almond-based milk alternative. The majority of the strongest acidifying plant-based isolates were identified as Lactococcus lactis, which were found to lower the pH of almond milk faster than dairy yoghurt cultures. Whole genome sequencing (WGS) of 18 plant-based Lc. lactis isolates revealed the presence of sucrose utilisation genes (sacR, sacA, sacB and sacK) in the strongly acidifying strains (n = 17), which were absent in one non-acidifying strain. To confirm the importance of Lc. lactis sucrose metabolism in efficient acidification of nut-based milk alternatives, we obtained spontaneous mutants defective in sucrose utilisation and confirmed their mutations by WGS. One mutant containing a sucrose-6-phosphate hydrolase gene (sacA) frameshift mutation was unable to efficiently acidify almond, cashew and macadamia nut milk alternatives. Plant-based Lc. lactis isolates were heterogeneous in their possession of the nisin gene operon near the sucrose gene cluster. The results of this work show that sucrose-utilising plant-based Lc. lactis have potential as starter cultures for nut-based milk alternatives.


Assuntos
Lactobacillales , Lactococcus lactis , Fermentação , Verduras , Frutas , Nozes , Lactococcus lactis/metabolismo , Sacarose/metabolismo
5.
Int J Biol Macromol ; 228: 207-215, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36535353

RESUMO

The dissolution behaviour of three corn starches, including corn starch (CS), high amylose corn starch (HACS) and waxy corn starch (WCS) with different amylose content in 1-allyl-3-methylimidazolium chloride ([AMIM]Cl) and 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) were studied by comparing their dissolution state in ionic liquids (ILs). Further, the structural and thermal properties of the regenerated starch were analyzed. WCS with the lowest amylose content had the fastest dissolution rate, the most extensive structural damage, and the lowest solubility and required the maximum energy for dissolution. In the process of dissolution-regeneration, the A-type crystalline structure of WCS and CS was completely destroyed and transformed into an amorphous structure, while the B-type crystalline structure of HACS transformed into an ordered V-shaped structure. And the thermal stability of starch was improved after dissolution-regeneration in ILs. Among the two kinds of ILs, [AMIM] Cl had a better ability to dissolve starch, causing minor damage to the starch.


Assuntos
Líquidos Iônicos , Amido , Amido/química , Amilose/química , Solubilidade , Líquidos Iônicos/química , Zea mays/química , Amilopectina/química
6.
J Food Sci Technol ; 59(9): 3567-3577, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35875214

RESUMO

Fermented camel milk provides many health benefits like antidiabetic activity, anti-hypertensive activity etc. Fermented camel milk contains IPP or VPP rich ACE inhibitory peptides. The aim of this study was to spot the novel Angiotensin I-Converting Enzyme inhibitory peptides liberated by the potent proteolytic Lactobacillus acidophilus NCDC-15 from camel milk (Indian breed). NCDC-15 had exhibited maximum PepX activity (0.655) and ACE-inhibitory activity (78.33%) at 12 and 48 h of incubation at 37 °C respectively. Proteolytic activity was measured using o-phthaldialdehyde method and observed maximum (0.976 OD) at 2% of inoculation for 12 h of incubation at 37 °C. Water soluble extracts derived from fermented camel milk were ultrafiltered through 3 kDa, 5 kDa and 10 kDa membrane filters from which 3 kDa permeates (48.01% peptides production & 49.46% ACE-inhibition) and 10 kDa permeates (55.04% peptides production & 42.40% ACE-inhibition) had shown maximum peptides production and ACE-inhibitory activity. Overall, 24 peptides were identified from the samples of 3 kDa permeates [6 fractions (K1, L1, M1, N1, O1 and P1)] and 10 permeates [5 fractions (S, T, U, V and W)]. Novel peptide (AIGPVADLHI) was matched with k-casein in AHTPDB database and other peptides were also found matched with α and ß-caseins of camel milk. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05357-9.

7.
J Texture Stud ; 53(5): 617-628, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35708507

RESUMO

Texture-modified foods and thickened fluids play a major role in clinical treatment for individuals who suffer from swallowing difficulties (known as dysphagia). International Dysphagia Diet Standardization Initiative (IDDSI) developed a standardized terminology and description for texture-modified foods and thickened fluids to allow dysphagia patients to receive the correct consistency of food/drink. While the IDDSI framework provides a consistent texture description (Levels 0-7) and is widely accepted as an international standard, testing and assessment of IDDSI texture level are qualitative in nature and subjective in manner. These methods were proposed primarily for use by frontline carers, but are not most ideal for industrial purposes of quality control of such products. Therefore, the main aim of this work was to develop a quantitative instrumental method that best describes IDDSI levels as an objective framework. A set of test samples, including commercially available instant mashed potato, baby rice cereal, and cooked potato cubes of varying texture, were prepared. Two IDDSI measuring techniques, fork pressure test and spoon tilt test, were used to evaluate texture grades of these samples. Puncture and compression tests based on texture analyzer were used to assess cohesiveness, adhesiveness, firmness, and hardness for each food category (Levels 4-7). Thresholds of cohesiveness and adhesiveness, as well as bands of acceptable firmness and hardness for each food category were clearly identified and are proposed as objective complements to the IDDSI framework.


Assuntos
Transtornos de Deglutição , Solanum tuberosum , Deglutição , Dieta , Alimentos , Humanos , Viscosidade
8.
J Texture Stud ; 53(5): 609-616, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35717604

RESUMO

Thickened fluids are commonly used in the medical management of individuals who suffer from swallowing difficulty (known as dysphagia). International Dysphagia Diet Standardization Initiative (IDDSI) developed a standardized terminology and description for texture-modified foods and thickened fluids to allow dysphagia patients to receive the correct consistency of food/drink. Syringe flow test and fork drip test are suggested by IDDSI to identify the drink category (IDDSI Levels 1-4). These practical methods are widely welcomed by carers and patients because of their simplicity. However, these methods are not most feasible for industrial applications, where objective measurements are required for industry for the purpose of quality control of such products. Therefore, our aim in this work was to develop quantitative and objective measurements that best describe IDDSI level category for use as an objective framework. Two measuring techniques, syringe flow test and fork drip test, recommended by IDDSI were evaluated in two different sets of experiment. Participants were recruited to categorize fluid samples of known texture parameters using syringe flow test and fork drip test techniques. The apparent stress measured from Ball-Back Extrusion (BBE) technique for each of the fluid category (IDDSI Levels 1-4) was calculated. Bands of apparent stress for each of the fluid category were developed from two measuring techniques, syringe flow test and fork drip test. An inconsistency was observed between these two measuring techniques for IDDSI Level 3 fluid due to different dominating factors in the two tests. However, we proposed to combine the results from the two experiments to develop a quantitative range for each IDDSI Level as objective complements to the IDDSI Framework. Thickened fluid manufacturers are encouraged to follow the proposed guidelines presented once they are clinically validated and use them fine-tune their products, thus enhancing the safety of individuals with dysphagia.


Assuntos
Transtornos de Deglutição , Bebidas , Deglutição , Alimentos , Humanos , Viscosidade
9.
Curr Res Food Sci ; 5: 653-664, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35434648

RESUMO

Protein inadequacy is the major problem for most plant-based dairy yoghurt substitutes. This study investigated three limited degree of hydrolysis (DH: 1%, 5%, and 9%) of almond protein and the combined effect of DH and hydrolysed almond protein (HP) to non-hydrolysed almond protein (NP) ratios (HP/NP: 40:60, 20:80, 10:90 and 5:95) on the physicochemical properties of resulting fermentation induced almond-based gel (yoghurt). The gel microstructure, particle size, firmness, pH, water holding capacity (WHC), lubrication, flow, and gelation characteristics were measured and associated with the DH, composition, and SDS-PAGE results. The results show significant differences in gel samples with the same HP/NP (40:60) ratio of protein but different protein DH. A higher DH (9%) resulted in samples with lower hardness (6.03 g), viscosity (0.11 Pa s at 50 s-1), cohesiveness (0.63) and higher friction (0.203 at 10 mm/s) compared to sample with 1% DH with higher hardness - 7.34 g, viscosity at 50 s-1 - 0.16 Pa s, cohesiveness - 0.86 and friction at 10 mm/s - 0.194. Comparing samples with the same DH (5%) but different HP/NP ratios showed smaller coarse microgel particles (21.36 µm) and lower hardness (7.17 g), viscosity (0.14 Pa s at 50 s-1) and friction value (0.189 at 10 mm/s) in samples with high HP/NP (40:60) compared to sample with low HP/NP (5:95) that contained significantly large coarse microgel particles (34.61 µm) with the gel being very hard (9.38 g), highly viscous (0.32 Pa s at 50 s-1), and less lubricating (0.220 at 10 mm/s).

10.
J Texture Stud ; 53(4): 503-516, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35312202

RESUMO

Brown rice is superior to white rice in nutritional value and in the prevention of chronic diseases. However, it is not the preference of consumers and the relative consumption of brown rice is limited due to a number of factors including chewiness and perceived hard texture after cooking. While both early harvested brown rice and germinated brown rice have been shown to contain superior nutritional components, there is limited knowledge on textural properties of these types of brown rice relative to standard brown rice, and how varieties may affect such properties. Thus, the present study examined the effect of variety, early harvest, and germination on those properties of eight rice varieties with contrasting amylose content and known texture in terms of milled rice. Early harvest and germination decreased pasting viscosities and cooked grain hardness. However, their effect on the characteristics of flour and whole grains differed, in which germination had a greater effect on pasting properties, while early harvest on the texture of cooked grains. The softer texture of brown rice, about 32% lower, could be achieved by germination and 46% by harvesting early. There was a good relationship between pasting characteristics, particularly setback and hardness among different varieties in brown rice, germinated brown rice, and also in early harvest brown rice. This is the first time the comparison of texture between the three brown rice types has been reported. The results also provide new options for the selection of desired characteristics for food processing and brown rice consumption.


Assuntos
Oryza , Culinária/métodos , Grão Comestível , Farinha/análise , Manipulação de Alimentos , Viscosidade
11.
Food Chem ; 383: 132200, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35168049

RESUMO

Lutein has limited applicability in the food industry because of its poor water solubility and chemical instability. In this study, amorphous and crystalline lutein-loaded microencapsulated powders were prepared via wet media milling and spray drying techniques. The breakage kinetics, surface morphology, physicochemical characteristics, encapsulation efficiency, dissolution behaviour, and storage stability of the two types of microencapsules were determined. Compared with the crystalline formulation, amorphous lutein nanoparticles displayed better breakability (∼478.8 nm within 20 min) in the milling process and faster dissolution rates under both sink and supersaturation conditions (88.0 ± 1.7% and 47.0 ± 3.8%, respectively, within 2 min). Stability testing revealed that the amorphous formulation exhibited slower degradation rates, with decay constants k of 0.03 and 0.07 at 25 and 40 °C, respectively. Our study results suggest that microencapsules with amorphous lutein nanoparticles represent a commercially viable formulation for maintaining chemical stability and improving oral bioavailability.


Assuntos
Luteína , Nanopartículas , Composição de Medicamentos , Estabilidade de Medicamentos , Nanopartículas/química , Tamanho da Partícula , Pós , Solubilidade
12.
J Texture Stud ; 53(1): 108-121, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34689342

RESUMO

Soy-cow blended milk is a potential nutritional beverage and raw material for dairy products. This study determined the particle size, flow, lubrication, flavor and sensory properties of cow milk, soy milk and their blends. Twenty-one major volatile compounds were identified using solid-phase microextraction gas chromatography (SPME-GCMS) in cow milk and soy milk. Among all the compounds detected in the milk samples, hexanal, associated with off flavor was found highest in soymilk followed by cow milk and blended milk. From confocal images, soy-cow blended milk at a ratio of 1:1 showed a homogenous distribution of small fat globules and protein compared to the soy milk and cow milk. The addition of soy milk to cow milk lowers the particle size although not significantly (p > .05) and decreases the viscosity of blended milk. Cow milk was the most viscous (2.66 mPa·s at 50 s-1 ) with large particles (0.48 µm) observed from confocal images. However, soymilk was found to have better lubrication properties (boundary regime) with a lower friction coefficient (~0.30) compared to cow milk (~0.40) and blended milk (~0.50) at low entrainment speed (0.1-2 mm/s). The sensory panel ranked cow milk as creamier and more viscous while soymilk was perceived as more astringent with beany flavor. Overall, a proportion of 3:7 soy-cow blended milk was more acceptable than the other two blended milks with less beany flavor, as confirmed by the lower amount of hexanal from gas chromatography mass spectrometer.


Assuntos
Leite de Soja , Paladar , Animais , Bovinos , Emulsões/análise , Feminino , Leite/química , Percepção , Leite de Soja/química
13.
Food Chem ; 371: 131382, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808775

RESUMO

Effects of low methoxyl pectin, milk protein concentrate (MPC), and waxy starch on the encapsulation of green tea-polyphenols in alginate gels produced using spray aerosol technique were evaluated. MPC and waxy starch treated first by cold-renneted induced gelation method and gelatinization method, respectively. DSC thermal analysis and FTIR spectroscopy were used to prove the presence of polyphenols in gel matrixes. The encapsulation efficiency (%EE) and the polyphenols release were investigated using Folin-Ciocalteu assay. The results showed that the addition of biopolymers into alginate gels increased the encapsulation efficiency (%EE) but reduced the release percentage of polyphenol in water and simulated gastric fluid (SGF). Among the three biopolymers, cold-renneted MPC gave the best protection for polyphenols encapsulated in alginate microgels. It increased %EE from 63% to 68% in fresh gels, reduced the release percentage in water from 72% to 62% and reduced the release percentage in SGF from 76% to 67%.


Assuntos
Alginatos , Microgéis , Aerossóis , Coloides , Pectinas , Polifenóis , Amido , Chá
14.
Food Res Int ; 150(Pt A): 110778, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34865793

RESUMO

This study investigated the effects of milk protein concentrate (MPC85) (untreated, cold-renneted, and pre-heated (80 °C, 30 min)) addition on the physical/mechanical properties of sodium alginate (2% w/w) composite gels in millimeter-size (bead) and centrimeter-size gel forms. The gels were characterized for the degree of syneresis, swelling behavior, hardness, stiffness, viscoelastic behavior, and surface morphology of freeze-dried gel. The results showed that the addition of untreated and treated MPCs reduced the hardness, the stiffness and the solid-like behavior of the alginate gels. Untreated MPC and pre-heated MPC caused no effect on syneresis of alginate gels. The addition of cold-renneted MPC reduced the degree of syneresis in composite gels by 13.7%. Similarly, the addition of cold-renneted MPC reduced (by 16.4%) the degree of syneresis of the alginate composite gels after incubation in simulated gastric fluid (SGF). After incubation in simulated intestinal fluid (SIF), the gel containing alginate only swelled while gels containing untreated MPC and pre-heated MPC experienced degradation and a severe mass loss. Meanwhile, the gels containing cold-renneted MPC swelled and at the same time eroded. Moreover, only cold-renneted MPC composite gels showed lower shrinkage and wrinkles on the surface of the beads during lyophilization. Therefore, based on these results, it is indicated that cold-rennet induced gelation method could increase the effectiveness of MPC as a composite material for alginate gels.


Assuntos
Alginatos , Proteínas do Leite , Quimosina , Géis
15.
Int J Biol Macromol ; 193(Pt B): 2202-2209, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34780896

RESUMO

Hydrogel, as a three-dimensional material with high water content, has unique physicochemical and variable mechanical properties. Natural polysaccharide-based composite hydrogels are very popular within medical industry as these viscoelastic materials are non-toxic, biodegradable, bioabsorbable, and biocompatible. This research investigates the engineering of novel composite hydrogels from natural polysaccharides salecan and curdlan without any structural modification and chemical crosslinking. The scanning electron microscopy, Fourier transform infrared spectroscopy and various rheological methods were employed to investigate the morphology, molecular interaction, and flow behavior of the samples respectively. The key rheological parameters were compared using the Power Law, Herschel-Bulkley and Arrhenius models. This is the first study reporting a novel composite hydrogel made from Salecan and Curdlan with ideal elasticity, enhanced thermostability, good injectability, self-recovery and other rheological properties that will pave the way for application in different fields.


Assuntos
Hidrogéis/química , beta-Glucanas/química , Materiais Biocompatíveis/química , Elasticidade , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura/métodos , Reologia/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Água/química
16.
Pharmaceutics ; 13(9)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34575425

RESUMO

Rheological characteristics and shear response have potential implication in defining the pharmaceutical equivalence, therapeutic equivalence, and perceptive equivalence of commercial topical products. Three creams (C1 and C3 as oil-in-water and C2 as water-in-oil emulsions), and two gels (G1 and G2 carbomer-based) were characterized using the dynamic range of controlled shear in steady-state flow and oscillatory modes. All products, other than C3, met the Critical Quality Attribute criteria for high zero-shear viscosity (η0) of 2.6 × 104 to 1.5 × 105 Pa∙s and yield stress (τ0) of 55 to 277 Pa. C3 exhibited a smaller linear viscoelastic region and lower η0 (2547 Pa∙s) and τ0 (2 Pa), consistent with lotion-like behavior. All dose forms showed viscoelastic solid behavior having a storage modulus (G') higher than the loss modulus (G″) in the linear viscoelastic region. However, the transition of G' > G″ to G″ > G' during the continual strain increment was more rapid for the creams, elucidating a relatively brittle deformation, whereas these transitions in gels were more prolonged, consistent with a gradual disentanglement of the polymer network. In conclusion, these analyses not only ensure quality and stability, but also enable the microstructure to be characterized as being flexible (gels) or inelastic (creams).

17.
Curr Res Food Sci ; 4: 577-587, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485926

RESUMO

The influence of the protein, fat and sugar in almond milk on the formation of the acidic gel was investigated by determining their physicochemical and microstructural properties. The protein, fat and sugar in the almond milk were varied from 2% to 6%, 0.8%-7% and 0.6%-7%, respectively and fermented using Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophiles cultures to form a gel structure. Both protein and fat increased the gel strength, viscosity (stirred gel) and lightness of almond yoghurts as the concentration increased. The addition of protein content increased the cohesiveness (from 0.70 to 1.17), water holding capacity (from 28.75% to 52.22%) and D4,3 value of particle size (from 32.76 µm to 44.41 µm) of almond yoghurt. Fat reduction decreased the firmness (from 6.56 g to 4.69 g), D4,3 value (from 88.53 µm to 18.37 µm), and water holding capacity (from 48.96% to 27.66%) of almond yoghurt. With sugar addition, almond yoghurt showed increased adhesiveness, decreased lightness and a low pH, with no significant difference in firmness, particle size, and flow behaviour. The confocal images provided evidence that the fortified protein contents homogeneously entrapped fat globules resulting in a more stable gel network and increased fat content led to large fat globule formation resulting in a harder gel network, while the added sugar did not significantly affect the gel network. The results suggested that the protein fortification enhances the texture of almond yoghurt. The fat content of 7% with 3.5% protein showed poor consistency and gel strength of yoghurt. Sugar mainly contributed to bacterial metabolism during fermentation.

18.
Foods ; 10(5)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065288

RESUMO

The influence of emulsifiers and dairy solids on churning and physical attributes of butter was investigated. Commercial dairy cream was blended with each of the ingredients (0.5%, w/w) separately, aged overnight (10 °C), and churned (10 °C) into butter. The employed additives showed a distinctive impact on the macroscopic properties of butter without largely affecting the melting behavior. In fresh butter, polyglycerol polyricinoleate (PGPR) emulsifier having dominated hydrophobic moieties significantly (p < 0.05) enhanced the softness. Among dairy solids, sodium caseinate (SC) was the most effective in reducing the solid fat fraction, hardness, and elastic modulus (G'), while whey protein isolate (WPI) and whole milk powder (WMP) produced significantly harder, stiffer, and more adhesive butter texture. As per tribological analysis, PGPR, Tween 80, and SC lowered the friction-coefficient of butter, indicating an improved lubrication property of the microstructure. The extent of butter-setting during 28 days of storage (5 °C) varied among the samples, and in specific, appeared to be delayed in presence of WPI, WMP, and buttermilk solids. The findings of the study highlighted the potential of using applied emulsifiers and dairy-derived ingredients in modifying the physical functionality of butter and butter-like churned emulsions in addition to a conventional cream-ageing process.

19.
Food Res Int ; 141: 110111, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33641978

RESUMO

In this study, the potential of heat desiccated milk powder (HDMP) in a composite dairy matrix with semi skimmed milk powder (SSMP) was assessed for hot melt extrusion-based 3D printing. The rheological characteristics of formulations at three stages i.e., pre-printing, printing, and post-printing were investigated. The shear thinning with rapid shear recovery and thermoresponsive behavior of the formulations were analyzed to mimic the prevailing conditions of pre-processing, processing, and post-processing of formulations to understand the temperature induced variations in their rheological characteristics during each stage. The rheological properties were correlated with printability through assessment of the consistency of straight lines (1D), average area of lattice scaffolds (2D), and dimensional stability of the 3D printed constructs. Results demonstrated that an increase in the level of incorporation of SSMP and a decrease in the proportion of HDMP increased the shear thinning behavior, viscosity (ɳ), yield stress (τ0), storage modulus (G') and a decline in the shear recoverability of the formulations. The thermoresponsive behavior of the formulations was established with gelation temperature ranging from 28.1 to 29.4˚C. The formulation SSMP (35): HDMP (25) resulted in sagging of the printed constructs, whereas the formulation SSMP (55): HDMP (5.0) exhibited the highest dimensional stability and shape retention post printing, owing to its maximum τ0 (1211.8 Pa) and G' (7026.4 Pa). The results obtained could provide insight into improving the performance of an HME based 3D printing in the dairy and food industries.


Assuntos
Temperatura Alta , Impressão Tridimensional , Reologia , Temperatura , Viscosidade
20.
J Texture Stud ; 52(2): 240-250, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33315243

RESUMO

One in every twelve people worldwide suffers from dysphagia that affects the swallowing mechanism and some patients require a special texture-modified food for their sustenance. Fish is a great source of nutrients and proteins, however the commercially dysphagia diet made from fish is limited. This study investigated the textural characteristics of a soft fish paste produced from steamed grass carp fillet with different the water addition, grinding cycles and ratio of starch with the mixture of steamed fillet and water, following International Dysphagia Diet Standardisation Initiative (IDDSI) guidelines and other instruments. The water addition and particle size affected the physical properties, and the starch had a certain masking effect on fishy odor. The mixture of steamed fish fillets and water (91:9 wt/wt) was ground in a colloid mill for 3 cycles. The fish paste was then sterilized by adding sugar, salt, and starch in the mixture (ratios of 0.5:100, 0.5:100, and 0.6:100, wt/wt, respectively) and mixing well. The paste conformed to Level 4-pureed and extremely thick of IDDSI framework. The fish paste product had a light fishy odor that was acceptable to sensory specialists.


Assuntos
Transtornos de Deglutição , Bebidas , Deglutição , Dieta , Humanos , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA