Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inflammopharmacology ; 26(4): 973-981, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29238904

RESUMO

Fenofibrate, an anti-hyperlipidemic drug and its phase-I biotransformed metabolite fenofibric acid, was studied for COX-1 (PDB ID: 3N8Y) and COX-2 (PDB ID: 1PXX) inhibition potentials in silico and in vitro for their effects on human recombinant COX-2 enzyme isolated from a Baculovirus expression system in sf21 cells (EC 1.14.99.1) using a conventional spectrophotometric assay. Furthermore, the compounds were also screened for their anti-inflammatory potentials in vivo using carrageenan-induced paw oedema method in Wistar rats. The test compounds fenofibric acid, fenofibrate, and the standard drug diclofenac exhibited binding energies of - 9.0, - 7.2, and - 8.0 kcal mol-1, respectively, against COX-2 and - 7.2, - 7.0, and - 6.5 kcal mol-1, respectively, against COX-1. In in vitro studies, both the test compounds inhibited COX-2 enzyme activity. Fenofibric acid showed an IC50 value of 48 nM followed by fenofibrate (82 nM), while diclofenac showed an IC50 value of 58 nM. Furthermore, under in vivo conditions in carrageenan-induced paw oedema rodent model, fenofibric acid exhibited relatively potent anti-inflammatory activity compared with fenofibrate. Hence, we conclude that fenofibric acid and fenofibrate are not only anti-hyperlipidemic but also shows potent anti-inflammatory activity, which may have an additional impact in the treatment of diabetic complications, viz., hyperlipidemia and inflammation leading to atherosclerosis.


Assuntos
Anti-Inflamatórios/administração & dosagem , Inibidores de Ciclo-Oxigenase 2/administração & dosagem , Edema/tratamento farmacológico , Fenofibrato/análogos & derivados , Animais , Anti-Inflamatórios/farmacologia , Carragenina , Simulação por Computador , Ciclo-Oxigenase 1/efeitos dos fármacos , Ciclo-Oxigenase 2/efeitos dos fármacos , Diclofenaco/farmacologia , Modelos Animais de Doenças , Edema/patologia , Fenofibrato/administração & dosagem , Fenofibrato/farmacologia , Humanos , Hipolipemiantes/administração & dosagem , Hipolipemiantes/farmacologia , Concentração Inibidora 50 , Masculino , Ratos , Ratos Wistar
2.
Springerplus ; 5: 166, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27026863

RESUMO

Specific inhibitors of Cytochrome P4502C9 enzyme (CYP2C9) viz. clopidogrel, fenofibrate fluvoxamine and sertraline at concentration of 50, 100, 150 and 200 µM were employed to investigate the nature of enzyme involved in bioconversion of meloxicam to its main metabolite 5-OH methyl meloxicam by Cunninghamella blakesleeana. Virtual screening for interaction of specific CYP2C9 inhibitors with human CYP2C9 enzyme was performed by molecular docking using Auto dock vina 4.2 version. The in silico studies were further substantiated by in vitro studies, which indicated fenofibrate to be a potent inhibitor of CYP2C9 enzyme followed by sertraline, clopidogrel and fluvoxamine, respectively. Two-stage fermentation protocol was followed to study metabolism of meloxicam and its inhibition by different CYP2C9 inhibitors. Meloxicam metabolites were identified using HPLC, LC-MS analysis and based on previous reports, as 5-OH methyl meloxicam (M1), 5-carboxy meloxicam (M2) and an unidentified metabolite (M3). All the inhibitors tested in the study showed a clear concentration dependent inhibition of meloxicam metabolism. The results suggest that the enzymes involved in metabolism of meloxicam in C. blakesleeana are akin to mammalian metabolism. Hence, C. blakesleeana can be used as a model organism in studying drug interactions and also in predicting mammalian drug metabolism.

3.
Drug Metab Lett ; 8(2): 88-95, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24910236

RESUMO

Different fungi viz. Aspergillus niger NCIM 589, A.ochraceous NCIM 1140, Cunninghamella blakesleeana NCIM 687, C. echinulata NCIM 691, Rhizopus stolonifer NCIM 880, Mucor rouxi MTCC 386, Trichothecium roseum NCIM 1147 were screened for their potential to biotransform anti-hyperlipidemia and anti-hypertriglyceridemia drug, fenofibrate to fenofibric acid, the active metabolite and other mammalian metabolites. Among the fungi screened C. blakesleeana transformed fenofibrate to fenofibric acid and other three metabolites. HPLC, LC-MS/MS analysis and previous reports confirmed the transformation of fenofibrate and metabolites as fenofibric acid (M1), reduced fenofibric acid (M2), reduced fenofibric acid taurine conjugate (M3), reduced fenofibric acid ester glucuronide (M4), the mammalian metabolites reported previously. The results proved the potential of C.blakesleeana NCIM 687 in the production of mammalian phase I (M1 and M2) and phase II (M3 and M4) metabolites in large quantities and also as an in vitro model for drug metabolism studies.


Assuntos
Fenofibrato/análogos & derivados , Fungos/metabolismo , Hipolipemiantes/metabolismo , Animais , Glicemia/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Fenofibrato/metabolismo , Fenofibrato/farmacologia , Hipolipemiantes/farmacologia , Masculino , Ratos , Ratos Wistar , Espectrometria de Massas em Tandem
4.
Appl Biochem Biotechnol ; 165(5-6): 1120-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21837380

RESUMO

In the present investigation, thermophilic fungus Rhizomucor pusillus was used to study biotransformation of antihelmintic drug albendazole to produce its active metabolite, albendazole sulfoxide and novel metabolites of commercial interest. A two-stage fermentation procedure was followed for biotransformation of albendazole. The transformation was identified and structures were confirmed by high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry analysis. Four metabolites albendazole sulfoxide, the active metabolite, albendazole sulfone, N-methyl metabolite of albendazole sulfoxide, and a novel metabolite were produced. The study demonstrates the biotransformation ability of thermophilic fungus R. pusillus NRRL28626 in the production of, the active metabolite of albendazole which has industrial and economic importance, other metabolites and a novel metabolite in an ecofriendly way.


Assuntos
Albendazol/metabolismo , Anti-Helmínticos/metabolismo , Rhizomucor/metabolismo , Albendazol/química , Anti-Helmínticos/química , Biotransformação , Temperatura Alta , Estrutura Molecular , Rhizomucor/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA