Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 10: 1142620, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37081851

RESUMO

Schistosomiasis is a globally prevalent, debilitating disease that is poorly controlled by chemotherapy and for which no vaccine exists. While partial resistance in people may develop over time with repeated infections and treatments, some animals, including the brown rat (Rattus norvegicus), are only semi-permissive and have natural protection. To understand the basis of this protection, we explored the nature of the immune response in the brown rat to infection by Schistosoma mansoni. Infection leads to production of IgG to parasite glycoproteins with complex-type N-glycans that contain a non-mammalian-type modification by core α2-Xylose and core α3-Fucose (core Xyl/Fuc). These epitopes are expressed on the surfaces of schistosomula and adult worms. Importantly, IgG to these epitopes can kill schistosomula by a complement-dependent process in vitro. Additionally, sera from both infected rhesus monkey and infected brown rat were capable of killing schistosomula in a manner inhibited by glycopeptides containing core Xyl/Fuc. These results demonstrate that protective antibodies to schistosome infections in brown rats and rhesus monkeys include IgG responses to the core Xyl/Fuc epitopes in surface-expressed N-glycans, and raise the potential of novel glyco-based vaccines that might be developed to combat this disease.

2.
Transpl Infect Dis ; 23(4): e13655, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34057792

RESUMO

Tacrolimus is widely used to prevent graft rejection after allogeneic transplantation by suppressing T cells in a non-antigen-specific fashion. Global T-cell suppression makes transplant recipients more susceptible to infection, especially infection by opportunistic intracellular pathogens. Infection followed by secondary challenge with the opportunistic intracellular bacterial pathogen, Listeria monocytogenes, was used to probe when tacrolimus most significantly impacts antimicrobial host defense. Tacrolimus-treated mice showed no difference in innate susceptibility following primary infection, whereas susceptibility to secondary challenge was significantly increased. Modifying the timing of tacrolimus initiation with respect to primary infection compared with secondary challenge showed significantly reduced susceptibility in tacrolimus-treated mice where tacrolimus was discontinued prior to secondary challenge. Thus, tacrolimus overrides protection against secondary infection primed by primary infection (and presumably live attenuated vaccines), with the most critical window for tacrolimus-induced infection susceptibility being exposure immediately prior to secondary challenge. These results have important implications for strategies designed to boost antimicrobial T-cell-mediated immunity in transplant recipients.


Assuntos
Listeria monocytogenes , Listeriose , Animais , Humanos , Imunidade Celular , Camundongos , Camundongos Endogâmicos C57BL , Tacrolimo/farmacologia
3.
mBio ; 12(1)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622714

RESUMO

Maternal sepsis is a leading cause of morbidity and mortality during pregnancy. Escherichia coli is a primary cause of bacteremia in women and occurs more frequently during pregnancy. Several key outstanding questions remain regarding how to identify women at highest infection risk and how to boost immunity against E. coli infection during pregnancy. Here, we show that pregnancy-induced susceptibility to E. coli systemic infection extends to rodents as a model of human infection. Mice infected during pregnancy contain >100-fold-more recoverable bacteria in target tissues than nonpregnant controls. Infection leads to near complete fetal wastage that parallels placental plus congenital fetal invasion. Susceptibility in maternal tissues positively correlates with the number of concepti, suggesting important contributions by expanded placental-fetal target tissue. Remarkably, these pregnancy-induced susceptibility phenotypes are also efficiently overturned in mice with resolved sublethal infection prior to pregnancy. Preconceptual infection primes the accumulation of E. coli-specific IgG and IgM antibodies, and adoptive transfer of serum containing these antibodies to naive recipient mice protects against fetal wastage. Together, these results suggest that the lack of E. coli immunity may help discriminate individuals at risk during pregnancy, and that overriding susceptibility to E. coli prenatal infection by preconceptual priming is a potential strategy for boosting immunity in this physiological window of vulnerability.IMPORTANCE Pregnancy makes women especially vulnerable to infection. The most common cause of bloodstream infection during pregnancy is by a bacterium called Escherichia coli This bacterium is a very common cause of bloodstream infection, not just during pregnancy but in all individuals, from newborn babies to the elderly, probably because it is always present in our intestine and can intermittently invade through this mucosal barrier. We first show that pregnancy in animals also makes them more susceptible to E. coli bloodstream infection. This is important because many of the dominant factors likely to control differences in human infection susceptibility can be property controlled for only in animals. Despite this vulnerability induced by pregnancy, we also show that animals with resolved E. coli infection are protected against reinfection during pregnancy, including having resistance to most infection-induced pregnancy complications. Protection against reinfection is mediated by antibodies that can be measured in the blood. This information may help to explain why most women do not develop E. coli infection during pregnancy, enabling new approaches for identifying those at especially high risk of infection and strategies for preventing infection during pregnancy.


Assuntos
Anticorpos Antibacterianos/sangue , Infecções por Escherichia coli/imunologia , Escherichia coli/imunologia , Complicações Infecciosas na Gravidez/imunologia , Sepse/imunologia , Sepse/microbiologia , Transferência Adotiva , Animais , Anticorpos Antibacterianos/administração & dosagem , Infecções por Escherichia coli/etiologia , Infecções por Escherichia coli/prevenção & controle , Feminino , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Placenta , Gravidez , Complicações Infecciosas na Gravidez/microbiologia , Fatores de Risco , Sepse/mortalidade , Sepse/prevenção & controle
4.
Infect Immun ; 84(5): 1371-1386, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26883596

RESUMO

Infection of mammals by the parasitic helminth Schistosoma mansoni induces antibodies to glycan antigens in worms and eggs, but the differential nature of the immune response among infected mammals is poorly understood. To better define these responses, we used a shotgun glycomics approach in which N-glycans from schistosome egg glycoproteins were prepared, derivatized, separated, and used to generate an egg shotgun glycan microarray. This array was interrogated with sera from infected mice, rhesus monkeys, and humans and with glycan-binding proteins and antibodies to gather information about the structures of antigenic glycans, which also were analyzed by mass spectrometry. A major glycan antigen targeted by IgG from different infected species is the FLDNF epitope [Fucα3GalNAcß4(Fucα3)GlcNAc-R], which is also recognized by the IgG monoclonal antibody F2D2. The FLDNF antigen is expressed by all life stages of the parasite in mammalian hosts, and F2D2 can kill schistosomula in vitro in a complement-dependent manner. Different antisera also recognized other glycan determinants, including core ß-xylose and highly fucosylated glycans. Thus, the natural shotgun glycan microarray of schistosome eggs is useful in identifying antigenic glycans and in developing new anti-glycan reagents that may have diagnostic applications and contribute to developing new vaccines against schistosomiasis.


Assuntos
Antígenos de Helmintos/imunologia , Polissacarídeos/imunologia , Schistosoma mansoni/imunologia , Zigoto/imunologia , Animais , Anticorpos Anti-Helmínticos/sangue , Antígenos de Helmintos/química , Antígenos de Helmintos/isolamento & purificação , Epitopos/imunologia , Feminino , Humanos , Imunoglobulina G/sangue , Macaca mulatta , Espectrometria de Massas , Camundongos , Análise em Microsséries , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Ligação Proteica
5.
Glycobiology ; 24(7): 619-37, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24727440

RESUMO

Schistosomiasis caused by infection with parasitic helminths of Schistosoma spp. is a major global health problem due to inadequate treatment and lack of a vaccine. The immune response to schistosomes includes glycan antigens, which could be valuable diagnostic markers and vaccine targets. However, no precedent exists for how to design vaccines targeting eukaryotic glycoconjugates. The di- and tri-saccharide motifs LacdiNAc (GalNAcß1,4GlcNAc; LDN) and fucosylated LacdiNAc (GalNAcß1,4(Fucα1-3)GlcNAc; LDNF) are the basis for several important schistosome glycan antigens. They occur in monomeric form or as repeating units (poly-LDNF) and as part of a variety of different glycoconjugates. Because chemical synthesis and conjugation of such antigens is exceedingly difficult, we sought to develop a recombinant expression system for parasite glycans. We hypothesized that presentation of parasite glycans on the cell surface would induce glycan-specific antibodies. We generated Chinese hamster ovary (CHO) Lec8 cell lines expressing poly-LDN (L8-GT) and poly-LDNF (L8-GTFT) abundantly on their membrane glycoproteins. Sera from Schistosoma mansoni-infected mice were highly cross-reactive with the cells and with cell-surface N-glycans. Immunizing mice with L8-GT and L8-GTFT cells induced glycan-specific antibodies. The L8-GTFT cells induced a sustained booster response, with antibodies that bound to S. mansoni lysates and recapitulated the exquisite specificity of the anti-parasite response for particular presentations of LDNF antigen. In summary, this recombinant expression system promotes successful generation of antibodies to the glycans of S. mansoni, and it can be adapted to study the role of glycan antigens and anti-glycan immune responses in many other infections and pathologies.


Assuntos
Anticorpos Anti-Helmínticos/imunologia , Imunoglobulina G/imunologia , Lactose/análogos & derivados , Schistosoma mansoni/imunologia , Animais , Apresentação de Antígeno , Células CHO , Engenharia Celular , Cricetinae , Cricetulus , Imunização , Lactose/imunologia , Camundongos , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/terapia
6.
Glycobiology ; 24(7): 602-18, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24727442

RESUMO

Schistosomiasis is a debilitating parasitic disease of humans, endemic in tropical areas, for which no vaccine is available. Evidence points to glycan antigens as being important in immune responses to infection. Here we describe our studies on the comparative humoral immune responses to defined schistosome-type glycan epitopes in Schistosoma mansoni-infected humans, rhesus monkeys and mice. Rhesus anti-glycan responses over the course of infection were screened on a defined glycan microarray comprising semi-synthetic glycopeptides terminating with schistosome-associated or control mammalian-type glycan epitopes, as well as a defined glycan microarray of mammalian-type glycans representing over 400 glycan structures. Infected rhesus monkeys generated a high immunoglobulin G (IgG) antibody response to the core xylose/core α3 fucose epitope of N-glycans, which peaked at 8-11 weeks post infection, coinciding with maximal ability to kill schistosomula in vitro. By contrast, infected humans generated low antibody levels to this epitope. At 18 months following praziquantel therapy to eliminate the parasite, antibody levels were negligible. Mice chronically infected with S. mansoni generated high levels of anti-fucosylated LacdiNAc (GalNAcß1, 4(Fucα1, 3)GlcNAc) IgM antibodies, but lacked a robust response to the core xylose/core α3 fucose N-glycan antigens compared with other species studied, and their sera demonstrated an intermediate level of schistosomula killing in vitro. These differential responses to parasite glycan antigens may be related to the ability of rhesus monkeys to self-cure in contrast to the chronic infection seen in humans and mice. Our results validate defined glycan microarrays as a useful technology to evaluate diagnostic and vaccine antigens for schistosomiasis and perhaps other infections.


Assuntos
Anticorpos Anti-Helmínticos/imunologia , Imunoglobulina G/imunologia , Lactose/análogos & derivados , Esquistossomose mansoni/imunologia , Adulto , Animais , Epitopos , Humanos , Lactose/imunologia , Macaca mulatta , Camundongos , Praziquantel/uso terapêutico , Esquistossomose mansoni/tratamento farmacológico , Especificidade da Espécie
7.
Front Immunol ; 4: 240, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24009607

RESUMO

Helminths are multicellular parasitic worms that comprise a major class of human pathogens and cause an immense amount of suffering worldwide. Helminths possess an abundance of complex and unique glycoconjugates that interact with both the innate and adaptive arms of immunity in definitive and intermediate hosts. These glycoconjugates represent a major untapped reservoir of immunomodulatory compounds, which have the potential to treat autoimmune and inflammatory disorders, and antigenic glycans, which could be exploited as vaccines and diagnostics. This review will survey current knowledge of the interactions between helminth glycans and host immunity and highlight the gaps in our understanding which are relevant to advancing therapeutics, vaccine development, and diagnostics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA