Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 162(Pt B): 112074, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461327

RESUMO

Vacuum frying (VF) is known as the most popular food processing method for the production of ready-to-eat snacks. It includes simultaneous mass and heat transfer in very low temperature and frying period to provide higher qualitative products. The quantity of oil used for frying is less in the vacuum frying method as compared to other frying methods. Numbers of physical, chemical, and structural changes occur during the frying process by evaporation of moisture, obstruction of oil movement, gelatinization of starch, denaturation of protein structure, and solubilization of pectin cells. These changes lead to textural modification of fried products and VF successfully enhances the textural properties at optimum process parameters which are according to the consumers' acceptance. In this context, this review is an update of the VF, showing the effect of different process parameters on the improvement of the texture of the fried snacks. Additionally, the mechanism behind the development of texture due to VF has been described in detail along with proper figures. Also, a comparative study of VF and atmospheric conventional frying on the increment of textural characteristics in various food materials starting from fruits and vegetables to fish and meat products have been highlighted. Moreover, to enhance the food texture during VF, several pre/post frying treatments are carried out which have been taken into discussion. Further, some novel techniques adopted along with VF, which influence highly on texture development of food materials, have been mentioned.


Assuntos
Temperatura Baixa , Verduras , Animais , Vácuo , Frutas , Temperatura Alta
2.
Molecules ; 27(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35630725

RESUMO

The number of food frauds in coconut-based products is increasing due to higher consumer demands for these products. Rising health consciousness, public awareness and increased concerns about food safety and quality have made authorities and various other certifying agencies focus more on the authentication of coconut products. As the conventional techniques for determining the quality attributes of coconut are destructive and time-consuming, non-destructive testing methods which are accurate, rapid, and easy to perform with no detrimental sampling methods are currently gaining importance. Spectroscopic methods such as nuclear magnetic resonance (NMR), infrared (IR)spectroscopy, mid-infrared (MIR)spectroscopy, near-infrared (NIR) spectroscopy, ultraviolet-visible (UV-VIS) spectroscopy, fluorescence spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and Raman spectroscopy (RS) are gaining in importance for determining the oxidative stability of coconut oil, the adulteration of oils, and the detection of harmful additives, pathogens, and toxins in coconut products and are also employed in deducing the interactions in food constituents, and microbial contaminations. The objective of this review is to provide a comprehensive analysis on the various spectroscopic techniques along with different chemometric approaches for the successful authentication and quality determination of coconut products. The manuscript was prepared by analyzing and compiling the articles that were collected from various databases such as PubMed, Google Scholar, Scopus and ScienceDirect. The spectroscopic techniques in combination with chemometrics were shown to be successful in the authentication of coconut products. RS and NMR spectroscopy techniques proved their utility and accuracy in assessing the changes in coconut oil's chemical and viscosity profile. FTIR spectroscopy was successfully utilized to analyze the oxidation levels and determine the authenticity of coconut oils. An FT-NIR-based analysis of various coconut samples confirmed the acceptable levels of accuracy in prediction. These non-destructive methods of spectroscopy offer a broad spectrum of applications in food processing industries to detect adulterants. Moreover, the combined chemometrics and spectroscopy detection method is a versatile and accurate measurement for adulterant identification.


Assuntos
Cocos , Análise Espectral Raman , Óleo de Coco , Óleos de Plantas/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA