Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
3D Print Addit Manuf ; 11(2): e731-e742, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38689899

RESUMO

Laser powder bed fusion (LPBF) of Al-Cu alloys shows high susceptibility to cracking due to a wide solidification temperature range. In this work, 2024 alloys were manufactured by LPBF at different laser processing parameters. The effect of processing parameters on the densification behavior and mechanical properties of the LPBF-processed 2024 alloys was investigated. The results show that the porosity increases significantly with increasing laser power, while the number of cracks and lack-of-fusion defects increase distinctly with increasing scan speed. The solidification cracking susceptibility of the LPBF-processed 2024 alloys prepared at different processing parameters was analyzed based on a finite element model, which was accurately predicted by theoretical calculations. Dense and crack-free 2024 samples with a high densification of over 98.1% were manufactured at a low laser power of 200 W combined with a low laser scan speed of 100 mm/s. The LPBF-processed 2024 alloys show a high hardness of 110 ± 4 HV0.2, an ultimate tensile strength of 300 ± 15 MPa, and an elongation of ∼3%. This work can serve as reference for obtaining crack-free and high-performance Al-Cu alloys by LPBF.

2.
3D Print Addit Manuf ; 11(2): e628-e637, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38689925

RESUMO

The equiatomic AlCoCrFeNi high entropy alloy (HEA) is prone to cracking during the additive manufacturing process due to the high cooling rates observed, which limits its application to a large extent. In this study, the selective laser melting (SLM) technique was adopted to fabricate the alloy and the mechanism of crack formation was revealed. Most importantly, a new design strategy was proposed to suppress the generation of cracks, and the optimization of the preparation process was also studied in detail. It is found that the interlaminar crack is related to the heat input at the edge of the specimen, and the internal cracks are formed by solidification cracks. Alloys without interlaminar crack can be prepared by means of combination of the side inclination angle and the process parameters. Side inclination angle optimization provides a possibility for the preparation of crack-free AlCoCrFeNi HEA by SLM.

3.
Materials (Basel) ; 17(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473478

RESUMO

This study endeavors to comprehensively explore and elucidate the seamless integration of NiTi shape memory alloys (SMAs) into multifaceted applications through the utilization of novel joining techniques. The primary focus lies in the utilization of wire arc additive manufacturing (WAAM) to deposit Nitinol (NiTi) onto Copper (Cu), thereby introducing a transformative approach for their integration into electro-mechanical systems and beyond. Through a detailed examination of the NiTi/Cu bimetallic junction, using advanced analytical techniques including SEM, XRD, and DSC analyses, this research aims to unravel the intricate complexities inherent within the interface. The SEM images and X-ray patterns obtained reveal a complex and nuanced interface characterized by a broad mixed zone comprising various constituents, including Ti(Ni,Cu)2, pure Cu, Ti2(Ni,Cu)3 precipitates, and Ni-rich NiTi precipitates. The DSC results, showcasing low-intensity broad peaks during thermal cycling, underscore the inherent challenges in demonstrating functional properties within the NiTi/Cu system. Recognizing the critical importance of an enhanced martensitic transformation, this study delves into the effects of heat treatment. Calorimetric curves post-annealing at 500 °C exhibit distinct transformation peaks, shedding light on the intricate influence of NiTi layer distribution within the junction. The optimal heat treatment parameters for NiTi/Cu junction restoration are meticulously explored and determined at 500 °C for a duration of 12 h. Furthermore, the study offers valuable insights into optimizing NiTi-Cu joints, with micro-hardness values reaching 485 HV and compressive strength scaling up to 650 MPa. These significant findings not only hold promise for diverse applications across various industries but also pave the way for further research directions and explorations into the realm of SMA integration and advanced joining methodologies.

4.
J Funct Biomater ; 14(10)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37888186

RESUMO

Achieving lightweight, high-strength, and biocompatible composites is a crucial objective in the field of tissue engineering. Intricate porous metallic structures, such as lattices, scaffolds, or triply periodic minimal surfaces (TPMSs), created via the selective laser melting (SLM) technique, are utilized as load-bearing matrices for filled ceramics. The primary metal alloys in this category are titanium-based Ti6Al4V and iron-based 316L, which can have either a uniform cell or a gradient structure. Well-known ceramics used in biomaterial applications include titanium dioxide (TiO2), zirconium dioxide (ZrO2), aluminum oxide (Al2O3), hydroxyapatite (HA), wollastonite (W), and tricalcium phosphate (TCP). To fill the structures fabricated by SLM, an appropriate ceramic is employed through the spark plasma sintering (SPS) method, making them suitable for in vitro or in vivo applications following minor post-processing. The combined SLM-SPS approach offers advantages, such as rapid design and prototyping, as well as assured densification and consolidation, although challenges persist in terms of large-scale structure and molding design. The individual or combined application of SLM and SPS processes can be implemented based on the specific requirements for fabricated sample size, shape complexity, densification, and mass productivity. This flexibility is a notable advantage offered by the combined processes of SLM and SPS. The present article provides an overview of metal-ceramic composites produced through SLM-SPS techniques. Mg-W-HA demonstrates promise for load-bearing biomedical applications, while Cu-TiO2-Ag exhibits potential for virucidal activities. Moreover, a functionally graded lattice (FGL) structure, either in radial or longitudinal directions, offers enhanced advantages by allowing adjustability and control over porosity, roughness, strength, and material proportions within the composite.

5.
3D Print Addit Manuf ; 10(4): 640-649, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37609595

RESUMO

In the present study, TiC-Fe cermets were fabricated through selective laser melting (SLM) for the first time employing pulse wave using a pulse shaping technique and regular laser pulse wave. Two samples were fabricated each with adapting pulse shaping technique and regular laser pulse wave with varied laser peak power and exposure time to obtain an optimized parameter. The pulse shaping technique proves to be an optimal method for fabrication of the TiC-Fe-based cermet. The effect of the laser peak power and pulse shaping on the microstructure development was investigated through scanning electron microscopy and X-ray diffraction analysis. Two-phased microstructures revealed the distribution of TiC and Fe. A maximum hardness and fracture toughness of 1010 ± 65 MPa and 16.3 ± 1.7 MPa m1/2, respectively, were observed for the pulsed-shaped samples illustrating that pulse shaping can be an effective way to avoid cracking in brittle materials processed by SLM.

6.
3D Print Addit Manuf ; 10(4): 785-791, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37614803

RESUMO

Commercially pure (cp) molybdenum (Mo) is one of the high-temperature materials of immense potential. It has a body-centered cubic (bcc) structure so it is hard to fabricate using nonequilibrium processes such as the selective laser melting (SLM) without the formation of cracks due to its inherent brittleness. This study deals with the fabrication of dense and near crack-free cp-Mo samples produced by the SLM. The laser scan strategy is adjusted from a single scan to a double scan to reduce the solidification cracks. Samples produced with a laser double scan strategy show a density of ∼99% with a hardness of ∼222 HV.

7.
Materials (Basel) ; 15(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36363300

RESUMO

The present study describes the laser welding of Co-based superalloy L605 (52Co-20Cr-10Ni-15W) equivalent to Haynes-25 or Stellite-25. The influence of laser welding process input parameters such as laser beam power and welding speed on mechanical and metallurgical properties of weld joints were investigated. Epitaxial grain growth and dendritic structures were visible in the weld zone. The phase analysis results indicate the formation of hard phases like CrFeNi, CoC, FeNi, and CFe in the weld zone. These hard phases are responsible for the increase in microhardness up to 321 HV0.1 in the weld zone, which is very close to the microhardness of the parent material. From the tensile strength tests, the ductile failure of welded specimens was confirmed due to the presence of dimples, inter-granular cleavage, and micro voids in the fracture zone. The maximum tensile residual stress along the weld line is 450 MPa, whereas the maximum compressive residual stress across the weld line is 500 MPa. On successful application of Response Surface methodology (RSM), laser power of 1448.5 W and welding speed of 600 mm/min i.e., line energy or heat input equal to 144 J/mm, were found to be optimum values for getting sound weld joint properties. The EBSD analysis reveals the elongated grain growth in the weld pool and very narrow grain growth in the heat-affected zone.

8.
Materials (Basel) ; 15(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36234147

RESUMO

The work aimed to produce Ni-P-MoS2-Al2O3 on Al-7075 alloys with multiple attributes through an electroless (EL) plating route. The effects of additives (MoS2 and Al2O3) in the EL bath on the surface morphology, topography, hardness, composition (phase and elemental), roughness, wettability, and coating thickness were evaluated. Results indicate a substantial enhancement in microhardness of the EL-coated surfaces by 70% (maximum hardness = ~316 HV) using powders, and 30% (244 HV) without powders. The maximum coating thickness and water contact angle obtained with powders were 6.16 µm and 100.46°, respectively. The coefficient of friction for the samples prepared using powders was 0.12, and for the base material it was 0.18. The compositional analysis through EDS and XRD suggested the incorporation of a hard and lubricious layer on the EL-coated surface owing to the presence of different phases of Al, Mo, P, Zn, O, and S. Therefore, the resulting coating surfaces impart hardness, self-lubrication, hydrophobicity, and wear resistance simultaneously.

9.
Int J Adv Manuf Technol ; 120(1-2): 975-988, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35194290

RESUMO

In this work, we combine selective laser melting (SLM) and spark plasma sintering (SPS) to fabricate new materials with high virucidal potential. Various bioactive disc-shaped ceramics, metal alloys, and composites were fabricated and tested against bacteriophage Phi6-a model system for RNA-enveloped viruses. We prepared silver-doped titanium dioxide (TiO2 + 2.5‒10% Ag), copper-doped titanium dioxide (TiO2 + 2.5‒10% Cu), Cu2NiSiCr, and Cu15Ni8Sn composite materials (metal lattices filled with ceramics). The virucidal tests of the ceramic and metal powders were performed in buffered suspensions, while the surfaces of the discs were tested by swabbing. The results show that the virus titer on the TiO2 + 10% Ag ceramic and CuNi2SiCr metal discs decreased by 4 logs after 15 min of exposure to the surfaces compared to the control ceramic and steel discs. We show that SLM 3D printed pre-alloyed CuNi2SiCr filled with bioactive TiO2 + 10% Ag nanopowders and sintered by the SPS process combines the simplicity of printing with the strength and virucidal properties of Ag and Cu materials. The proposed new virucidal materials were also used for the fabrication of prototype elevator buttons.

10.
Biomimetics (Basel) ; 6(4)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34842628

RESUMO

Biomimetics is an emerging field of science that adapts the working principles from nature to fine-tune the engineering design aspects to mimic biological structure and functions. The application mainly focuses on the development of medical implants for hard and soft tissue replacements. Additive manufacturing or 3D printing is an established processing norm with a superior resolution and control over process parameters than conventional methods and has allowed the incessant amalgamation of biomimetics into material manufacturing, thereby improving the adaptation of biomaterials and implants into the human body. The conventional manufacturing practices had design restrictions that prevented mimicking the natural architecture of human tissues into material manufacturing. However, with additive manufacturing, the material construction happens layer-by-layer over multiple axes simultaneously, thus enabling finer control over material placement, thereby overcoming the design challenge that prevented developing complex human architectures. This review substantiates the dexterity of additive manufacturing in utilizing biomimetics to 3D print ceramic, polymer, and metal implants with excellent resemblance to natural tissue. It also cites some clinical references of experimental and commercial approaches employing biomimetic 3D printing of implants.

11.
Materials (Basel) ; 14(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34361378

RESUMO

Wire arc additive manufacturing is a metal additive manufacturing technique that allows the fabrication of large size components at a high deposition rate. During wire arc additive manufacturing, multi-layer deposition results in heat accumulation, which raises the preheat temperature of the previously built layer. This causes process instabilities, resulting in deviations from the desired dimensions and variations in material properties. In the present study, a systematic investigation is carried out by varying the interlayer delay from 20 to 80 s during wire arc additive manufacturing deposition of the wall structure. The effect of the interlayer delay on the density, geometry, microstructure and mechanical properties is investigated. An improvement in density, reduction in wall width and wall height and grain refinement are observed with an increase in the interlayer delay. The grain refinement results in an improvement in the micro-hardness and compression strength of the wall structure. In order to understand the effect of interlayer delay on the temperature distribution, numerical simulation is carried out and it is observed that the preheat temperature reduced with an increase in interlayer delay resulting in variation in geometry, microstructure and mechanical properties. The study paves the direction for tailoring the properties of wire arc additive manufacturing-built wall structures by controlling the interlayer delay period.

12.
Materials (Basel) ; 14(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924116

RESUMO

Extruded Al-Zn-Mg-Cu alloy samples with grains aligned parallel to the extrusion direction were subjected to high-pressure annealing. The effects of annealing pressure on the microstructure, hardness, and corrosion properties (evaluated using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS)) were investigated. Phase analysis showed the presence of MgZn2 and α-Al phases, the MgZn2 phase dissolved into the matrix, and its amount decreased with the increasing annealing pressure. The recrystallization was inhibited, and the grains were refined, leading to an increase in the Vickers hardness with increasing the annealing pressure. The corrosion resistance was improved after high-pressure treatment, and a stable passivation layer was observed. Meanwhile, the number of corrosion pits and the width of corrosion cracks decreased in the high-pressure annealed samples.

13.
Materials (Basel) ; 14(2)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440648

RESUMO

The Al-20Si-5Fe-3Cu-1Mg alloy was fabricated using selective laser melting (SLM). The microstructure and properties of the as-prepared SLM, post-treated SLM, and SLM with substrate plate heating are studied. The as-prepared SLM sample shows a non-uniform microstructure with four different phases: fcc-αAl, eutectic Al-Si, Al2MgSi, and δ-Al4FeSi2. With thermal treatment, the phases become coarser and the δ-Al4FeSi2 phase transforms partially to ß-Al5FeSi. The sample produced with SLM substrate plate heating shows a relatively uniform microstructure without a distinct difference between hatch overlaps and track cores. Room temperature compression test results show that an as-prepared SLM sample reaches a maximum strength (862 MPa) compared to the heat-treated (524 MPa) and substrate plate heated samples (474 MPa) due to the presence of fine microstructure and the internal stresses. The reduction in strength of the sample produced with substrate plate heating is due to the coarsening of the microstructure, but the plastic deformation shows an improvement (20%). The present observations suggest that substrate plate heating can be effectively employed not only to minimize the internal stresses (by impacting the cooling rate of the process) but can also be used to modulate the mechanical properties in a controlled fashion.

14.
Materials (Basel) ; 15(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35009377

RESUMO

Aluminum matrix composites reinforced by CoCrFeMnNi high entropy alloy (HEA) particulates were fabricated using the stir casting process. The as-cast specimens were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). The results indicated that flake-like silicon particles and HEA particles were distributed uniformly in the aluminum matrix. TEM micrographs revealed the presence of both the matrix and reinforcement phases, and no intermetallic phases were formed at the interface of the matrix and reinforcement phases. The mechanical properties of hardness and tensile strength increased with an increase in the HEA content. The Al 6063-5 wt.% HEA composite had a ultimate tensile strength (UTS) of approximately 197 MPa with a reasonable ductility (around 4.05%). The LM25-5 wt.% HEA composite had a UTS of approximately 195 Mpa. However, the percent elongation decreased to roughly 3.80%. When the reinforcement content increased to 10 wt.% in the LM25 composite, the UTS reached 210 MPpa, and the elongation was confined to roughly 3.40%. The fracture morphology changed from dimple structures to cleavage planes on the fracture surface with HEA weight percentage enhancement. The LM25 alloy reinforced with HEA particles showed enhanced mechanical strength without a significant loss of ductility; this composite may find application in marine and ship building industries.

15.
Materials (Basel) ; 13(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066589

RESUMO

The laser-based powder bed fusion (LBPF) process or commonly known as selective laser melting (SLM) has made significant progress since its inception. Initially, conventional materials like 316L, Ti6Al4V, and IN-718 were fabricated using the SLM process. However, it was inevitable to explore the possible fabrication of the second most popular structural material after Fe-based alloys/steel, the Al-based alloys by SLM. Al-based alloys exhibit some inherent difficulties due to the following factors: the presence of surface oxide layer, solidification cracking during melt cooling, high reflectivity from the surface, the high thermal conductivity of the metal, poor flowability of the powder, low melting temperature, etc. Researchers have overcome these difficulties to successfully fabricate the different Al-based alloys by SLM. However, there exists no review dealing with the fabrication of different Al-based alloys by SLM, their fabrication issues, microstructure, and their correlation with properties in detail. Hence, the present review attempts to introduce the SLM process followed by a detailed discussion about the processing parameters that form the core of the alloy development process. This is followed by the current research status on the processing of Al-based alloys and microstructure evaluation (including defects, internal stresses, etc.), which are dealt with on the basis of individual Al-based series. The mechanical properties of these alloys are discussed in detail followed by the other important properties like tribological properties, fatigue properties, etc. Lastly, an outlook is given at the end of this review.

16.
Materials (Basel) ; 13(3)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979239

RESUMO

Additive Manufacturing (AM) is an emerging manufacturing technique of immense engineering and scientific importance and is also regarded as the technique of the future [...].

17.
Materials (Basel) ; 12(13)2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269672

RESUMO

In this study, a combination of Al-12Si and Al-20Si (Al-(12-20)Si) alloys was fabricated by selective laser melting (SLM) as a result of increased component requirements such as geometrical complexity and high dimensional accuracy. The microstructure and mechanical properties of the SLM Al-(12-20)Si in as-produced as well as in heat-treated conditions were investigated. The Al-(12-20)Si interface was in the as-built condition and it gradually became blurry until it disappeared after heat treatment at 673 K for 6 h. This Al-(12-20)Si bi-material displayed excellent mechanical properties. The hardness of the Al-20Si alloy side was significantly higher than that of the Al-12Si alloy side and the disparity between both sides gradually decreased and tended to be consistent after heat treatment at 673 K for 6 h. The tensile strength and elongation of the Al-(12-20Si) bi-material lies in between the Al-12Si and Al-20Si alloys and fracture occurs in the Al-20Si side. The present results provide new insights into the fabrication of bi-materials using SLM.

18.
Materials (Basel) ; 12(5)2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30866448

RESUMO

The wear properties of Ti-6Al-4V alloy have drawn great attention in both aerospace and biomedical fields. The present study examines the wear properties of Ti-6Al-4V alloy as prepared by selective laser melting (SLM), electron beam melting (EBM) and conventional forging processes. The SLM and EBM samples show better wear resistance than the forged sample, which correlates to their higher hardness values and weak delamination tendencies. The EBM sample shows a lower wear rate than the SLM sample because of the formation of multiple horizontal cracks in the SLM sample, which results in heavier delamination. The results suggest that additive manufacturing processes offer significantly wear-resistant Ti-6Al-4V specimens in comparison to their counterparts produced by forging.

19.
Materials (Basel) ; 11(5)2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29735932

RESUMO

Selective laser melting (SLM) is one of the additive manufacturing technologies that allows for the production of parts with complex shapes from either powder feedstock or from wires. Aluminum alloys have a great potential for use in SLM especially in automotive and aerospace fields. This paper studies the influence of starting powder characteristics on the processability of SLM fabricated AlSi12 alloy. Three different batches of gas atomized powders from different manufacturers were processed by SLM. The powders differ in particle size and its distribution, morphology and chemical composition. Cubic specimens (10 mm × 10 mm × 10 mm) were fabricated by SLM from the three different powder batches using optimized process parameters. The fabrication conditions were kept similar for the three powder batches. The influence of powder characteristics on porosity and microstructure of the obtained specimens were studied in detail. The SLM samples produced from the three different powder batches do not show any significant variations in their structural aspects. However, the microstructural aspects differ and the amount of porosity in these three specimens vary significantly. It shows that both the flowability of the powder and the apparent density have an influential role on the processability of AlSi12 SLM samples.

20.
Materials (Basel) ; 11(1)2018 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-29324694

RESUMO

The present study demonstrates the evolution of eutectic microstructure in arc-melted (Zr0.76Fe0.24)100-xNbx (0 ≤ x ≤ 10 atom %) composites containing α-Zr//FeZr2 nano-lamellae phases along with pro-eutectic Zr-rich intermetallic phase. The effects of Nb addition on the microstructural evolution and mechanical properties under compression, bulk hardness, elastic modulus, and indentation fracture toughness (IFT) were investigated. The Zr-Fe-(Nb) eutectic composites (ECs) exhibited excellent fracture strength up to ~1800 MPa. Microstructural characterization revealed that the addition of Nb promotes the formation of intermetallic Zr54Fe37Nb9. The IFT (KIC) increases from 3.0 ± 0.5 MPa√m (x = 0) to 4.7 ± 1.0 MPa√m (x = 2) at 49 N, which even further increases from 5.1 ± 0.5 MPa√m (x = 0) and up to 5.9 ± 1.0 MPa√m (x = 2) at higher loads. The results suggest that mutual interaction between nano-lamellar α-Zr//FeZr2 phases is responsible for enhanced fracture resistance and high fracture strength.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA