Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38727329

RESUMO

The rational design of composites based on graphene/metal oxides is one of the pillars for advancing their application in various practical fields, particularly gas sensing. In this study, a uniform distribution of ZnO nanoparticles (NPs) through the graphene layer was achieved, taking advantage of amine functionalization. The beneficial effect of amine groups on the arrangement of ZnO NPs and the efficiency of their immobilization was revealed by core-level spectroscopy, pointing out strong ionic bonding between the aminated graphene (AmG) and ZnO. The stability of the resulting Am-ZnO nanocomposite was confirmed by demonstrating that its morphology remains unchanged even after prolonged heating up to 350 °C, as observed by electron microscopy. On-chip multisensor arrays composed of both AmG and Am-ZnO were fabricated and thoroughly tested, showing almost tenfold enhancement of the chemiresistive response upon decorating the AmG layer with ZnO nanoparticles, due to the formation of p-n heterojunctions. Operating at room temperature, the fabricated multisensor chips exhibited high robustness and a detection limit of 3.6 ppm and 5.1 ppm for ammonia and ethanol, respectively. Precise identification of the studied analytes was achieved by employing the pattern recognition technique based on linear discriminant analysis to process the acquired multisensor response.

2.
Materials (Basel) ; 16(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37374449

RESUMO

A complex study was performed on a set of AlGaN/GaN high-electron-mobility transistor structures grown by metalorganic vapor phase epitaxy on miscut Si(111) wafers with a highly resistive epitaxial Si layer to investigate the influence of substrate miscut on their properties. The results showed that wafer misorientation had an influence on the strain evolution during the growth and surface morphology, and could have a strong impact on the mobility of 2D electron gas, with a weak optimum at 0.5° miscut angle. A numerical analysis revealed that the interface roughness was a main parameter responsible for the variation in electron mobility.

3.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293432

RESUMO

The observed differences in the structure of native tissue and tissue formed in vitro cause the loss of functional activity of cells cultured in vitro. The lack of fundamental knowledge about the protein mechanism interactions limits the ability to effectively create in vitro native tissue. Collagen is able to spontaneously assemble into fibrils in vitro, but in vivo, other proteins, for example fibronectin, have a noticeable effect on this process. The molecular or fibrillar structure of collagen plays an equally important role. Therefore, we studied the interaction of the molecular and fibrillar structure of collagen with fibronectin. Atomic force and transmission electron microscopy showed that the presence of fibronectin does not affect the native structure and diameter of collagen fibrils. Confocal microscopy demonstrated that the collagen structure affects the cell morphology. Cells are better spread on molecular collagen compared with cells cultured on fibrillar collagen. Fibronectin promotes the formation of a large number of focal contacts, while in combination with collagen of both forms, its effect is leveled. Thus, understanding the mechanisms of the relationship between the protein structure and composition will effectively manage the creation in vitro of a new tissue with native properties.


Assuntos
Fibronectinas , Células-Tronco Mesenquimais , Fibronectinas/metabolismo , Colágenos Fibrilares/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Colágeno Tipo I/metabolismo
4.
Nanomaterials (Basel) ; 11(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34684994

RESUMO

Monolayer (ML)-scale GaN/AlN multiple quantum well (MQW) structures for electron-beam-pumped ultraviolet (UV) emitters are grown on c-sapphire substrates by using plasma-assisted molecular beam epitaxy under controllable metal-rich conditions, which provides the spiral growth of densely packed atomically smooth hillocks without metal droplets. These structures have ML-stepped terrace-like surface topology in the entire QW thickness range from 0.75-7 ML and absence of stress at the well thickness below 2 ML. Satisfactory quantum confinement and mitigating the quantum-confined Stark effect in the stress-free MQW structures enable one to achieve the relatively bright UV cathodoluminescence with a narrow-line (~15 nm) in the sub-250-nm spectral range. The structures with many QWs (up to 400) exhibit the output optical power of ~1 W at 240 nm, when pumped by a standard thermionic-cathode (LaB6) electron gun at an electron energy of 20 keV and a current of 65 mA. This power is increased up to 11.8 W at an average excitation energy of 5 µJ per pulse, generated by the electron gun with a ferroelectric plasma cathode at an electron-beam energy of 12.5 keV and a current of 450 mA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA