Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 267: 116196, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38350359

RESUMO

Filamentous temperature-sensitive mutant Z (FtsZ) is a key cell-division protein recognized as an important target for anti-bacterial drug discovery, especially in the context of rising multi-drug resistance. A respiratory pathogen, Streptococcus pneumoniae, is rapidly evolving antibiotic resistance, thus posing a clinical risk in the developing world. Inhibiting the conserved protein FtsZ, leading to the arrest of cell division, is an attractive alternative strategy for inhibiting S. pneumoniae. Previously, Vitamin K3 was identified as an FtsZ-targeting agent against S. pneumoniae. In the present work, docking studies were used to identify potential anti-FtsZ agents that bind to the Vitamin K3-binding region of a homology model generated for S. pneumoniae FtsZ. Compounds with imidazo[1,2-a]pyridine-3-carboxylate core were synthesized and screened for their anti-proliferative activity against S. pneumoniae. Remarkably, the hit compound IP-01 showed anti-bacterial action against S. pneumoniae without any activity on other bacteria. In S. pneumoniae, IP-01 showed similar inhibitory action on FtsZ and cell division as Vitamin K3. Sequence alignment identified three unique residues within S. pneumoniae FtsZ that IP-01 binds to, providing a structural basis for the observed specificity. IP-01 is one of the first narrow-spectrum agents identified against S. pneumoniae that targets FtsZ, and we present it as a promising lead for the design of narrow-spectrum anti-FtsZ anti-pneumococcal compounds.


Assuntos
Proteínas do Citoesqueleto , Streptococcus pneumoniae , Proteínas de Bactérias , Vitamina K 3 , Citoesqueleto/metabolismo , Bactérias/metabolismo , Antibacterianos/química
2.
Biosci Rep ; 43(2)2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36695643

RESUMO

Combating anti-microbial resistance by developing alternative strategies is the need of the hour. Cell division, particularly FtsZ, is being extensively studied for its potential as an alternative target for anti-bacterial therapy. Bacillus subtilis and Escherichia coli are the two well-studied models for research on FtsZ, the leader protein of the cell division machinery. As representatives of gram-positive and gram-negative bacteria, respectively, these organisms have provided an extensive outlook into the process of cell division in rod-shaped bacteria. However, research on other shapes of bacteria, like cocci and ovococci, lags behind that of model rods. Even though most regions of FtsZ show sequence and structural conservation throughout bacteria, the differences in FtsZ functioning and interacting partners establish several different modes of division in different bacteria. In this review, we compare the features of FtsZ and cell division in the model rods B. subtilis and E. coli and the four pathogens: Staphylococcus aureus, Streptococcus pneumoniae, Mycobacterium tuberculosis, and Pseudomonas aeruginosa. Reviewing several recent articles on these pathogenic bacteria, we have highlighted the functioning of FtsZ, the unique roles of FtsZ-associated proteins, and the cell division processes in them. Further, we provide a detailed look at the anti-FtsZ compounds discovered and their target bacteria, emphasizing the need for elucidation of the anti-FtsZ mechanism of action in different bacteria. Current challenges and opportunities in the ongoing journey of identifying potent anti-FtsZ drugs have also been described.


Assuntos
Proteínas do Citoesqueleto , Escherichia coli , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Bactérias Gram-Negativas , Bactérias Gram-Positivas/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA