Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 9: 903130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928228

RESUMO

Scope: Nitrate supplementation is a popular ergogenic aid that improves exercise performance by reducing oxygen consumption during exercise. We investigated the effect of nitrate exposure and exercise on metabolic pathways in zebrafish liver. Materials and methods: Fish were exposed to sodium nitrate (606.9 mg/L), or control water, for 21 days and analyzed at intervals during an exercise test. We utilized untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and measured gene expression of 24 genes central to energy metabolism and redox signaling. Results: We observed a greater abundance of metabolites involved in endogenous nitric oxide (NO) metabolism and amino acid metabolism in nitrate-treated liver at rest, compared to rested controls. In the absence of exercise, nitrate treatment upregulated expression of genes central to nutrient sensing (pgc1a), protein synthesis (mtor) and purine metabolism (pnp5a and ampd1) and downregulated expression of genes involved in mitochondrial fat oxidation (acaca and cpt2). Conclusion: Our data support a role for sub-chronic nitrate treatment in the improvement of exercise performance, in part, by improving NO bioavailability, sparing arginine, and modulating hepatic gluconeogenesis and glycolytic capacity in the liver.

2.
J Appl Physiol (1985) ; 131(1): 142-157, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34043471

RESUMO

Dietary nitrate supplementation improves exercise performance by reducing the oxygen cost of exercise and enhancing skeletal muscle function. However, the mechanisms underlying these effects are not well understood. The purpose of this study was to assess changes in skeletal muscle energy metabolism associated with exercise performance in a zebrafish model. Fish were exposed to sodium nitrate (60.7 mg/L, 303.5 mg/L, 606.9 mg/L), or control water, for 21 days and analyzed at intervals (5, 10, 20, 30, 40 cm/s) during a 2-h strenuous exercise test. We measured oxygen consumption during an exercise test and assessed muscle nitrate concentrations, gene expression, and the muscle metabolome before, during, and after exercise. Nitrate exposure reduced the oxygen cost of exercise and increased muscle nitrate concentrations at rest, which were reduced with increasing exercise duration. In skeletal muscle, nitrate treatment upregulated expression of genes central to nutrient sensing (mtor), redox signaling (nrf2a), and muscle differentiation (sox6). In rested muscle, nitrate treatment increased phosphocreatine (P = 0.002), creatine (P = 0.0005), ATP (P = 0.0008), ADP (P = 0.002), and AMP (P = 0.004) compared with rested-control muscle. Following the highest swimming speed, concentration of phosphocreatine (P = 8.0 × 10-5), creatine (P = 6.0 × 10-7), ATP (P = 2.0 × 10-6), ADP (P = 0.0002), and AMP (P = 0.004) decreased compared with rested nitrate muscle. Our data suggest nitrate exposure in zebrafish lowers the oxygen cost of exercise by changing the metabolic programming of muscle prior to exercise and increasing availability of energy-rich metabolites required for exercise.NEW & NOTEWORTHY We show that skeletal muscle nitrate concentration is higher with supplementation at rest and was lower in groups with increasing exercise duration in a zebrafish model. The higher availability of nitrate at rest is associated with upregulation of key nutrient-sensing genes and greater availability of energy-producing metabolites (i.e., ATP, phosphocreatine, glycolytic intermediates). Overall, nitrate supplementation may lower oxygen cost of exercise through improved fuel availability resulting from metabolic programming of muscle prior to exercise.


Assuntos
Nitratos , Peixe-Zebra , Animais , Suplementos Nutricionais , Metaboloma , Músculo Esquelético/metabolismo , Nitratos/metabolismo
3.
PLoS One ; 15(12): e0240070, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33382700

RESUMO

Dietary nitrate lowers blood pressure and improves athletic performance in humans, yet data supporting observations that it may increase cerebral blood flow and improve cognitive performance are mixed. We tested the hypothesis that nitrate and nitrite treatment would improve indicators of learning and cognitive performance in a zebrafish (Danio rerio) model. We utilized targeted and untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis to examine the extent to which treatment resulted in changes in nitrate or nitrite concentrations in the brain and altered the brain metabolome. Fish were exposed to sodium nitrate (606.9 mg/L), sodium nitrite (19.5 mg/L), or control water for 2-4 weeks and free swim, startle response, and shuttle box assays were performed. Nitrate and nitrite treatment did not change fish weight, length, predator avoidance, or distance and velocity traveled in an unstressed environment. Nitrate- and nitrite-treated fish initially experienced more negative reinforcement and increased time to decision in the shuttle box assay, which is consistent with a decrease in associative learning or executive function however, over multiple trials, all treatment groups demonstrated behaviors associated with learning. Nitrate and nitrite treatment was associated with mild anxiogenic-like behavior but did not alter epinephrine, norepinephrine or dopamine levels. Targeted metabolomics analysis revealed no significant increase in brain nitrate or nitrite concentrations with treatment. Untargeted metabolomics analysis found 47 metabolites whose abundance was significantly altered in the brain with nitrate and nitrite treatment. Overall, the depletion in brain metabolites is plausibly associated with the regulation of neuronal activity including statistically significant reductions in the inhibitory neurotransmitter γ-aminobutyric acid (GABA; 18-19%), and its precursor, glutamine (17-22%). Nitrate treatment caused significant depletion in the brain concentration of fatty acids including linoleic acid (LA) by 50% and arachidonic acid (ARA) by 80%; nitrite treatment caused depletion of LA by ~90% and ARA by 60%, change which could alter the function of dopaminergic neurons and affect behavior. Nitrate and nitrite treatment did not adversely affect multiple parameters of zebrafish health. It is plausible that indirect NO-mediated mechanisms may be responsible for the nitrate and nitrite-mediated effects on the brain metabolome and behavior in zebrafish.


Assuntos
Aprendizagem por Associação/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Função Executiva/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Nitratos/farmacologia , Nitrito de Sódio/farmacologia , Animais , Ansiedade/induzido quimicamente , Ansiedade/psicologia , Ácido Araquidônico/antagonistas & inibidores , Ácido Araquidônico/metabolismo , Comportamento Animal/efeitos dos fármacos , Tamanho Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Encéfalo/metabolismo , Dopamina/metabolismo , Epinefrina/metabolismo , Feminino , Glutamina/metabolismo , Ácido Linoleico/antagonistas & inibidores , Ácido Linoleico/metabolismo , Masculino , Metaboloma/fisiologia , Norepinefrina/metabolismo , Reflexo de Sobressalto/efeitos dos fármacos , Reforço Psicológico , Peixe-Zebra/metabolismo , Ácido gama-Aminobutírico/metabolismo
4.
J Nutr ; 149(12): 2120-2132, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31495890

RESUMO

BACKGROUND: Dietary nitrate improves exercise performance by reducing the oxygen cost of exercise, although the mechanisms responsible are not fully understood. OBJECTIVES: We tested the hypothesis that nitrate and nitrite treatment would lower the oxygen cost of exercise by improving mitochondrial function and stimulating changes in the availability of metabolic fuels for energy production. METHODS: We treated 9-mo-old zebrafish with nitrate (sodium nitrate, 606.9 mg/L), nitrite (sodium nitrite, 19.5 mg/L), or control (no treatment) water for 21 d. We measured oxygen consumption during a 2-h, strenuous exercise test; assessed the respiration of skeletal muscle mitochondria; and performed untargeted metabolomics on treated fish, with and without exercise. RESULTS: Nitrate and nitrite treatment increased blood nitrate and nitrite levels. Nitrate treatment significantly lowered the oxygen cost of exercise, as compared with pretreatment values. In contrast, nitrite treatment significantly increased oxygen consumption with exercise. Nitrate and nitrite treatments did not change mitochondrial function measured ex vivo, but significantly increased the abundances of ATP, ADP, lactate, glycolytic intermediates (e.g., fructose 1,6-bisphosphate), tricarboxylic acid (TCA) cycle intermediates (e.g., succinate), and ketone bodies (e.g., ß-hydroxybutyrate) by 1.8- to 3.8-fold, relative to controls. Exercise significantly depleted glycolytic and TCA intermediates in nitrate- and nitrite-treated fish, as compared with their rested counterparts, while exercise did not change, or increased, these metabolites in control fish. There was a significant net depletion of fatty acids, acyl carnitines, and ketone bodies in exercised, nitrite-treated fish (2- to 4-fold), while exercise increased net fatty acids and acyl carnitines in nitrate-treated fish (1.5- to 12-fold), relative to their treated and rested counterparts. CONCLUSIONS: Nitrate and nitrite treatment increased the availability of metabolic fuels (ATP, glycolytic and TCA intermediates, lactate, and ketone bodies) in rested zebrafish. Nitrate treatment may improve exercise performance, in part, by stimulating the preferential use of fuels that require less oxygen for energy production.


Assuntos
Ácidos Graxos/metabolismo , Glicólise , Nitratos/uso terapêutico , Nitritos/uso terapêutico , Oxigênio/metabolismo , Condicionamento Físico Animal , Peixe-Zebra/metabolismo , Animais , Mitocôndrias/metabolismo , Peixe-Zebra/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA