Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Autoimmun Rev ; 23(5): 103535, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552995

RESUMO

Deposition of autoantibodies in glomeruli is a key factor in the development of lupus nephritis (LN). For a long time, anti-dsDNA and anti-C1q antibodies were thought to be the main cause of the kidney damage. However, recent studies have shown that the list of autoantibidies that have renal tropism and deposit in the kidney in LN is increasing and the link between anti-dsDNA and renal pathology is weak due to potential confounders. Aspecific bindings of dsDNA with cationic antibodies and of anti-dsDNA with several renal antigens such as actinin, laminin, entactin, and annexinA2 raised doubts about the specific target of these antibodies in the kidney. Moreover, the isotype of anti-dsDNA in SLE and LN has never received adequate interest until the recent observation that IgG2 are preponderant over IgG1, IgG3 and IgG4. Based on the above background, recent studies investigated the involvement of anti-dsDNA IgG2 and of other antibodies in LN. It was concluded that circulating anti-dsDNA IgG2 levels do not distinguish between LN versus non-renal SLE, and, in patients with LN, their levels do not change over time. Circulating levels of other antibodies such as anti-ENO1 and anti-H2 IgG2 were, instead, higher in LN vs non-renal SLE at the time of diagnosis and decreased following therapies. Finally, new classes of renal antibodies that potentially modify the anti-inflammatory response in the kidney are emerging as new co-actors in the pathogenetic scenario. They have been defined as 'second wave antibodies' for the link with detoxifying mechanisms limiting the oxidative stress in glomeruli that are classically stimulated in a second phase of inflammation. These findings have important clinical implications that may modify the laboratory approach to LN. Serum levels of anti-ENO1 and anti-H2 IgG2 should be measured in the follow up of patients for designing the length of therapies and identify those patients who respond to treatments. Anti-SOD2 could help to monitor and potentiate the anti-inflammatory response in the kidney.


Assuntos
Autoanticorpos , Nefrite Lúpica , Nefrite Lúpica/imunologia , Nefrite Lúpica/diagnóstico , Humanos , Autoanticorpos/imunologia , Autoanticorpos/sangue , Animais , Anticorpos Antinucleares/imunologia , Anticorpos Antinucleares/sangue , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Autoantígenos/imunologia
2.
Polymers (Basel) ; 15(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37688120

RESUMO

The delivery of drugs through the skin barrier at a predetermined rate is the aim of transdermal drug delivery systems (TDDSs). However, so far, TDDS has not fully attained its potential as an alternative to hypodermic injections and oral delivery. In this study, we presented a proof of concept of a dual drug-loaded patch made of nanoparticles (NPs) and ultrafine fibers fabricated by using one equipment, i.e., the electrospinning apparatus. Such NP/fiber systems can be useful to release drugs locally through the skin and the tympanic membrane. Briefly, dexamethasone (DEX)-loaded poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) fiber meshes were decorated with rhodamine (RHO)-loaded poly(lactic-co-glycolic acid) (PLGA) NPs, with RHO representing as a second drug model. By properly tuning the working parameters of electrospinning, DEX-loaded PHBHV fibers (i.e., by electrospinning mode) and RHO-loaded PLGA NPs (i.e., by electrospray mode) were successfully prepared and straightforwardly assembled to form a TDDS patch, which was characterized via Fourier transform infrared spectroscopy and dynamometry. The patch was then tested in vitro using human dermal fibroblasts (HDFs). The incorporation of DEX significantly reduced the fiber mesh stiffness. In vitro tests showed that HDFs were viable for 8 days in contact with drug-loaded samples, and significant signs of cytotoxicity were not highlighted. Finally, thanks to a beaded structure of the fibers, a controlled release of DEX from the electrospun patch was obtained over 4 weeks, which may accomplish the therapeutic objective of a local, sustained and prolonged anti-inflammatory action of a TDDS, as is requested in chronic inflammatory conditions, and other pathological conditions, such as in sudden sensorineural hearing loss treatment.

5.
Int J Clin Oncol ; 28(3): 363-369, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36689013

RESUMO

BACKGROUND: Cancer patients are more vulnerable to COVID-19 and are thus given high priority in vaccination campaigns. In solid cancer patients treated with checkpoint inhibitors, we evaluated the amount of anti-RBD and neutralizing antibodies and antibody avidity after two or three doses of the vaccine. METHODS: Thirty-eight solid cancer patients, 15 untreated hematological patients and 21 healthy subjects were enrolled in the study. Blood was collected before the first dose (T0), 21 days after the second (T2) and in 18 solid cancer patients also 15 days after the third dose of vaccine (T3). IgG, IgM and IgA anti-RBD antibodies were detected by ELISA. Neutralizing antibodies were measured testing the inhibition of RBD binding to ACE2. Antibody avidity was evaluated in 18 patients by a urea avidity ELISA. RESULTS: IgG anti-RBD antibodies were produced in 65.8% of the cancer patients at T2, and in 60% of hematological patients at levels lower than healthy controls. IgM and IgA anti-RBD antibodies were also produced in 5.3% and 21% cancer patients, respectively. At T3, a significant increase in anti-RBD IgG levels was observed. Neutralizing antibodies were produced in 68.4% of cancer patients as compared with 93% of untreated hematological patients and 100% of controls, at titers lower than in healthy subjects. At T3, neutralizing antibodies and avidity of IgG anti-RBD increased; 6/18 patients negative at T2 developed neutralizing antibodies at T3. CONCLUSION: The data indicate that in cancer patients mRNA vaccine induces high avidity anti-RBD antibodies and neutralizing antibodies that increase after the third dose. The process of induction and selection of high-affinity antibodies is apparently unaffected by the treatment with anti-PD-1 or anti-PD-L1 antibodies.


Assuntos
COVID-19 , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico , Vacinas contra COVID-19/uso terapêutico , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinação , Anticorpos Neutralizantes , Imunoglobulina A , Imunoglobulina G , Imunoglobulina M , Anticorpos Antivirais , Neoplasias/tratamento farmacológico
6.
Int Arch Allergy Immunol ; 184(1): 54-62, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36265449

RESUMO

INTRODUCTION: Immediate and delayed hypersensitivity reactions (HSR) to COVID-19 vaccines are rare adverse events that need to be prevented, diagnosed, and managed in order to guarantee adherence to the vaccination campaign. The aims of our study were to stratify the risk of HSR to COVID-19 vaccines and propose alternative strategies to complete the vaccination. METHODS: 1,640 subjects were screened for vaccinal eligibility, according to national and international recommendations. Among them, we enrolled for allergy workup 152 subjects, 43 with HSR to COVID-19 vaccines and 109 at high risk of HSR to the first dose. In vivo skin tests with drugs and/or vaccines containing PEG/polysorbates were performed in all of them, using skin prick test and, when negative, intradermal tests. In a subgroup of patients resulted negative to the in vivo skin tests, the programmed dose of COVID-19 vaccine (Pfizer/BioNTech) was administered in graded doses regimen, and detection of neutralizing anti-spike antibodies was performed in these patients after 4 weeks from the vaccination, using the SPIA method. RESULTS: Skin tests for PEG/polysorbates resulted positive in only 3% (5/152) of patients, including 2 with previous HSR to COVID-19 vaccines and 3 at high risk of HSR to the first dose. Among the 147 patients with negative skin tests, 97% (143/147) were eligible for vaccination and 87% (124/143) of them received safely the programmed COVID-19 vaccine dose. Administration of graded doses of Pfizer/BioNTech vaccine were well tolerated in 17 out of 18 patients evaluated; only 1 developed an HSR during the vaccination, less severe than the previous one, and all developed neutralizing anti-spike antibodies after 4 weeks with values comparable to those subjects who received the vaccine in unfractionated dose. CONCLUSION: On the whole, the usefulness of the skin tests for PEG/polysorbates seems limited in the diagnosis of HSR to COVID-19 vaccines. Graded doses regimen (Pfizer/BioNTech) is a safe and effective alternative strategy to complete the vaccinal course.


Assuntos
COVID-19 , Hipersensibilidade , Humanos , Vacinas contra COVID-19/efeitos adversos , Polissorbatos , COVID-19/diagnóstico , COVID-19/prevenção & controle , Vacinação/efeitos adversos , Anticorpos Neutralizantes
7.
Clin Exp Med ; 23(4): 1197-1203, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36074205

RESUMO

Vaccination represents the best strategy to fight COVID-19 pandemics, especially in immune compromised subjects. In chronic lymphatic leukemia patients, a marked impairment of the immune response to mRNA SARS-CoV-2 vaccine was observed. In this report, we analyzed anti-RBD and neutralizing antibodies in CLL patients after two doses of mRNA SARS CoV 2 vaccine and evaluated the impact of Bruton kinase inhibitory agents. Twenty-seven CLL patients vaccinated with mRNA vaccines against SARS CoV-2 were recruited. Serum IgG, IgM and IgA anti-RBD antibodies and neutralizing antibodies were detected, and antibody avidity was measured. Peripheral blood leukocytes subsets were evaluated by flow cytometry. After two vaccine doses anti-RBD IgG were produced in 11/27 (40.5%) of patients and levels of IgG and IgA anti RBD in CLL patients were sensibly lower than in controls. Neutralizing antibodies were detectable in 12/27 (44.5%) of the patients and their level was lower than that observed in controls. Disease burden and treatment with Bruton kinases inhibitors markedly impaired vaccine induced antibody response. However, in responder patients, antibody avidity was comparable to normal subjects, indicating that the process of clonal selection and affinity maturation takes place as expected. Taken together, these data confirm the impact of disease burden and therapy on production of anti-RBD and neutralizing antibodies and support the current policy of vaccinating CLL patients.


Assuntos
COVID-19 , Leucemia Linfocítica Crônica de Células B , Humanos , Anticorpos Neutralizantes , Vacinas contra COVID-19 , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinação , Imunoglobulina A , Imunoglobulina G
8.
J Autoimmun ; 132: 102900, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36087539

RESUMO

Mechanisms for the generation of anti-dsDNA autoantibodies are still not completely elucidated. One theory states that dsDNA interacts for mimicry with antibodies raised versus other antigens but molecular features for mimicry are unknown. Here we show that, at physiological acid-base balance, anti-Annexin A1 binds IgG2 dsDNA in a competitive and dose-dependent way with Annexin A1 and that the competition between the two molecules is null at pH 9. On the other hand, these findings also show that dsDNA and Annexin A1 interact with their respective antibodies on a strictly pH-dependent basis: in both cases, the binding was minimal at pH 4 and maximal at pH9-10. The anionic charge of dsDNA is mainly conferred by the numerous phosphatidic residues. The epitope binding site of Annexin A1 for anti-Annexin A1 IgG2 was here characterized as a string of 34 amino acids at the NH2 terminus, 10 of which are anionic. Circulating levels of anti-dsDNA and anti-Annexin A1 IgG2 antibodies were strongly correlated in patients with systemic lupus erythematosus (n 496) and lupus nephritis (n 425) stratified for age, sex, etc. These results show that dsDNA competes with Annexin A1 for the binding with anti-Annexin A1 IgG2 on a dose and charged mediated base, being able to display an inhibition up to 75%. This study provides the first demonstration that dsDNA may interact with antibodies raised versus other anionic molecules (anti-Annexin A1 IgG2) because of charge mimicry and this interaction may contribute to anti-dsDNA antibodies generation.


Assuntos
Anexina A1 , Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Anticorpos Antinucleares , Autoanticorpos , Imunoglobulina G , Anexina A1/metabolismo , DNA
9.
Front Immunol ; 13: 879946, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693806

RESUMO

The currently devastating pandemic of severe acute respiratory syndrome known as coronavirus disease 2019 or COVID-19 is caused by the coronavirus SARS-CoV-2. Both the virus and the disease have been extensively studied worldwide. A trimeric spike (S) protein expressed on the virus outer bilayer leaflet has been identified as a ligand that allows the virus to penetrate human host cells and cause infection. Its receptor-binding domain (RBD) interacts with the angiotensin-converting enzyme 2 (ACE2), the host-cell viral receptor, and is, therefore, the subject of intense research for the development of virus control means, particularly vaccines. In this work, we search for smaller fragments of the S protein able to elicit virus-neutralizing antibodies, suitable for production by peptide synthesis technology. Based on the analysis of available data, we selected a 72 aa long receptor binding motif (RBM436-507) of RBD. We used ELISA to study the antibody response to each of the three antigens (S protein, its RBD domain and the RBM436-507 synthetic peptide) in humans exposed to the infection and in immunized mice. The seroreactivity analysis showed that anti-RBM antibodies are produced in COVID-19 patients and immunized mice and may exert neutralizing function, although with a frequency lower than anti-S and -RBD. These results provide a basis for further studies towards the development of vaccines or treatments focused on specific regions of the S virus protein, which can benefit from the absence of folding problems, conformational constraints and other advantages of the peptide synthesis production.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Antivirais , Humanos , Camundongos , Peptídeos , Glicoproteína da Espícula de Coronavírus
10.
Clin Exp Immunol ; 209(3): 305-310, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-35732270

RESUMO

Glutathione S-transferase omega-1 (GSTO1-1) is a cytosolic enzyme involved in the modulation of critical inflammatory pathways as well as in cancer progression. Auto-antibodies against GSTO1-1 were detected in the serum of patients with esophageal squamous cell carcinoma and were proposed as potential biomarkers in the early detection of the disease. Our findings show that anti-GSTO1-1 antibodies can be found in a variety of inflammatory diseases, including autoimmune rheumatoid arthritis, infectious SARS-CoV-2, and trichinellosis. Our findings strongly suggest that anti-GSTO1-1 antibodies may be a marker of tissue damage/inflammation rather than a specific tumor-associated biomarker.


Assuntos
COVID-19 , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Biomarcadores Tumorais , Glutationa Transferase , Humanos , Inflamação , SARS-CoV-2
11.
Front Immunol ; 13: 856033, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35585976

RESUMO

Despite the global interest and the unprecedented number of scientific studies triggered by the COVID-19 pandemic, few data are available from developing and low-income countries. In these regions, communities live under the threat of various transmissible diseases aside from COVID-19, including malaria. This study aims to determine the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroreactivity of antibodies from COVID-19 and pre-COVID-19 samples of individuals in Mali (West Africa). Blood samples from COVID-19 patients (n = 266) at Bamako Dermatology Hospital (HDB) and pre-COVID-19 donors (n = 283) from a previous malaria survey conducted in Dangassa village were tested by ELISA to assess IgG antibodies specific to the full-length spike (S) protein, the receptor-binding domain (RBD), and the receptor-binding motif (RBM436-507). Study participants were categorized by age, gender, treatment duration for COVID-19, and comorbidities. In addition, the cross-seroreactivity of samples from pre-COVID-19, malaria-positive patients against the three antigens was assessed. Recognition of the SARS-CoV-2 proteins by sera from COVID-19 patients was 80.5% for S, 71.1% for RBD, and 31.9% for RBM (p < 0.001). While antibody responses to S and RBD tended to be age-dependent, responses to RBM were not. Responses were not gender-dependent for any of the antigens. Higher antibody levels to S, RBD, and RBM at hospital entry were associated with shorter treatment durations, particularly for RBD (p < 0.01). In contrast, higher body weights negatively influenced the anti-S antibody response, and asthma and diabetes weakened the anti-RBM antibody responses. Although lower, a significant cross-reactive antibody response to S (21.9%), RBD (6.7%), and RBM (8.8%) was detected in the pre-COVID-19 and malaria samples. Cross-reactive antibody responses to RBM were mostly associated (p < 0.01) with the absence of current Plasmodium falciparum infection, warranting further study.


Assuntos
COVID-19 , Malária , Anticorpos Antivirais , Humanos , Malária/epidemiologia , Mali , Pandemias , SARS-CoV-2
13.
Nat Commun ; 13(1): 2061, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35443751

RESUMO

The defining features of Alzheimer's disease (AD) include alterations in protein aggregation, immunity, lipid metabolism, synapses, and learning and memory. Of these, lipid abnormalities are the least understood. Here, we investigate the role of Stearoyl-CoA desaturase (SCD), a crucial regulator of fatty acid desaturation, in AD pathogenesis. We show that inhibiting brain SCD activity for 1-month in the 3xTg mouse model of AD alters core AD-related transcriptomic pathways in the hippocampus, and that it concomitantly restores essential components of hippocampal function, including dendritic spines and structure, immediate-early gene expression, and learning and memory itself. Moreover, SCD inhibition dampens activation of microglia, key mediators of spine loss during AD and the main immune cells of the brain. These data reveal that brain fatty acid metabolism links AD genes to downstream immune, synaptic, and functional impairments, identifying SCD as a potential target for AD treatment.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/metabolismo , Animais , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Hipocampo/metabolismo , Camundongos , Camundongos Transgênicos , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo
14.
Clin Rev Allergy Immunol ; 63(2): 240-250, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35092577

RESUMO

The identification of anti-NXP2 antibodies is considered a serological marker of dermatomyositis (DM), with calcinosis, severe myositis and, in some reports, with cancer. Historically, these associations with anti-NXP2 antibodies have been detected by immunoprecipitation (IP), but in the last few years commercial immunoblotting assays have been released. The aim of this collaborative project was to analyse the clinical features associated to anti-NXP2 antibodies, both with commercial line blot (LB) and IP. Myositis-specific and myositis-associated autoantibodies were detected in single centres by commercial line blot (LB); available sera were evaluated in a single centre by protein and RNA immunoprecipitation (IP), and IP-Western blot. Sixty patients anti-NXP2+ (NXP2+) positive by LB were compared with 211 patients anti-NXP2 negative with idiopathic inflammatory myositis (IIM). NXP2+ showed a younger age at IIM onset (p = 0.0014), more frequent diagnosis of dermatomyositis (p = 0.026) and inclusion-body myositis (p = 0.009), and lower rate of anti-synthetase syndrome (p < 0.0001). As for clinical features, NXP2+ more frequently develop specific skin manifestations and less frequently features related with overlap myositis and anti-synthetase syndrome. IP confirmed NXP2 positivity in 31 of 52 available sera (62%). Most clinical associations were confirmed comparing NXP2 LB+/IP+ versus NXP2-negative myositis, with the following exceptions: inclusion-body myositis diagnosis was not detected, whilst dysphagia and myositis were found more frequently in NXP2 LB+/IP+ patients. The 21 LB+ /IP-myositis patients did not show differences in clinical features when compared with the NXP2-myositis patients and more frequently displayed multiple positivity at LB. Risk of developing cancer-associated myositis was similar between NXP2-positive and NXP2-negative myositis patients, either when detected by LB or IP. Protein-IP confirmed NXP2 antibodies in nearly 60% of sera positive for the same specificity with commercial assay. Double-positive cases rarely occurred in myositis patients with a clinical diagnosis other than dermatomyositis. Patients only positive by LB (LB+/IP-) did not display clinical features typical of NXP2. NXP2 positivity by LB should be confirmed by other methods in order to correctly diagnose and characterize patients affected by idiopathic inflammatory myositis.


Assuntos
Dermatomiosite , Miosite , Neoplasias , Autoanticorpos , Humanos , Itália
15.
RMD Open ; 7(3)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34880126

RESUMO

OBJECTIVES: In patients with systemic autoimmune rheumatic disorders (SARDs), vaccination with SARS-CoV-2 mRNA vaccines has been proposed. The aim of this study is to evaluate the immune response elicited by vaccination with mRNA vaccine, testing IgM, IgA and IgG antibodies to SARS-CoV-2 receptor-binding domain (RBD) and measuring neutralising antibodies. METHODS: IgG, IgM and IgA anti-RBD antibodies were measured in 101 patients with SARDs. Antibodies inhibiting the interaction between RBD and ACE2 were evaluated. Antibody avidity was tested in a chaotropic ELISA using urea. Twenty-one healthcare workers vaccinated with mRNA vaccine served as control group. RESULTS: Anti-RBD IgG and IgA were produced after the first dose (69% and 64% of the patients) and after the boost (93% and 83%). Antibodies inhibiting the interaction of RBD with ACE2 were detectable in 40% of the patients after the first dose and 87% after boost, compared with 100% in healthy controls (p<0.01). Abatacept and mycophenolate had an impact on the titre of IgG anti-RBD antibodies (p<0.05 and p<0.005, respectively) and on the amount of neutralising antibodies. No effect of other therapies was observed. Vaccinated patients produce high avidity antibodies, as healthy controls. CONCLUSIONS: These data show that double-dose vaccination induced in patients with SARDs anti-RBD IgG and IgA antibodies in amounts not significantly different from controls, and, most interestingly, characterised by high avidity and endowed with neutralising activity.


Assuntos
Doenças Autoimunes , COVID-19 , Anticorpos Antivirais , Humanos , SARS-CoV-2 , Vacinas Sintéticas , Vacinas de mRNA
16.
Front Pharmacol ; 12: 750216, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764871

RESUMO

Background: SDF-1/CXCL12 is a chemokine with pleiotropic functions in hematopoietic stem cell niche homeostasis, germinal center architecture, B cell maturation, neoangiogenesis, and fibrosis. Recently, the CXCL12/CXCR4/CXCR7 axis was associated with cancer metastasis and autoimmune diseases. The IgG4-related disease (IgG4-RD) is a pathological condition characterized by IgG4+ plasma cells infiltrating fibrotic lesions. The aim of this research is to investigate the relevance of SDF-1/CXCL12 in IgG4-RD. Materials and Methods: Peripheral blood samples were collected before therapy from a single-center cohort of 28 IgG4-RD patients, fulfilling the ACR-EULAR classification criteria. Clinical and serological data were obtained for each patient. In total, 14 healthy donors (NHS), 9 patients with pancreatic ductal adenocarcinoma (PDAC), and 9 with Sjogren syndrome (SSj) were recruited as controls and screened for circulating SDF-1/CXCL12 by ELISA. Moreover, paraffin-embedded pancreatic biopsies obtained from patients with IgG4-RD (n = 7), non-autoimmune pancreatitis (n = 3), PDAC (n = 5), and control tissues (n = 4) were analyzed to study the tissue expression and localization of SDF-1/CXCL12 and one of its receptors, CXCR4, and their potential relation with neutrophil extracellular traps (NETs). Results: IgG4-RD patients had higher serum levels of SDF-1/CXCL12 than normal controls (p = 0.0137). Cytokine levels did not differ between the IgG4-RD autoimmune pancreatitis (AIP) and retroperitoneal fibrosis nor between the single- and multiple-organ involvement. No correlation was seen with the IgG4-RD Responder Index, IgG4 levels, white blood cells, or inflammatory markers in the serum. When compared to SSj, the IgG4-RD AIP subgroup presents higher amounts of serum SDF-1/CXCL12 (p = 0.0275), while no differences are seen in comparison with PDAC. The expression of SDF-1/CXCL12 in the tissue was significantly higher in the IgG4-RD tissue than the normal pancreas, and the tissue with the high SDF-1/CXCL12 expression is characterized by the overall inflammatory cell infiltration, fibrosis, and high level of NETs. Conclusion: Modulating B cell development, neoangiogenesis and fibrosis, and SDF-1/CXCL12 may play a role in IgG4-RD. The higher levels observed in IgG4-RD, as compared to SSj, which closely mimics the disease, can be related to a different pattern of lesions, with prevalent fibrosis seen in IgG4-RD. Taken together, these findings suggest that drugs acting on the CXCL12/CXCR4/CXCR7 axis may affect IgG4-RD.

18.
Autoimmun Rev ; 20(12): 102977, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34718161

RESUMO

Alpha-enolase (Eno) is an ubiquitary glycolytic enzyme playing multiple functions that go well beyond its principal metabolic role of energy supplier during glycolysis. Eno is localized in the cytoplasm, but also expressed on the cell membrane, where it binds plasminogen allowing its activation. Its shorter form, in the nucleus, acts as transcription factor. In inflammatory conditions, Eno undergoes post-translational modifications, such as citrullination, oxidation and phosphorylation. Eno is also an autoantigen in different disorders. In fact, autoantibodies to Eno have been detected in rheumatoid arthritis, lupus nephritis, primary glomerulonephritis, cancer, infections and other disorders, and in many cases they represent specific markers to be utilized in clinical practice. Anti-Eno antibodies in the different clinical conditions are not equal: they differ in isotype and often recognize different epitopes on the enzyme. IgG1 and IgG3 are prevalent in Rheumatoid Arthritis, IgG2 in Lupus nephritis and IgG4 in primary autoimmune glomerulopathy. This review analyzes the characteristics of anti-Eno autoantibodies in autoimmune disorders and cancer, describing their fine specificity and isotype restriction. The post-translational modifications that are target of autoantibodies are also discussed, as they represent the basis for elucidating the molecular mechanisms responsible for epitope generation. Despite an impressive amount of experimental work on anti-Eno antibodies, it is still necessary to validate the use of anti-Eno antibodies as biomarkers of selected diseases and extend the knowledge on the mechanisms of anti-Eno autoantibody production. Strategies that downmodulate the immune response to Eno may represent in the future novel approaches in the treatment of autoimmune disorders.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Especificidade de Anticorpos , Autoanticorpos , Autoantígenos , Humanos , Fosfopiruvato Hidratase
19.
Vaccines (Basel) ; 9(6)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207300

RESUMO

The BNT162b2 vaccine, containing lipid nanoparticles-formulated mRNA encoding the full-length spike protein of SARS-CoV-2, has been employed to immunize health care workers in Italy, administered in two doses 21 days apart. In this study, we characterized the antibody response induced by the BNT162b2 vaccine in a group of health care workers, tested at baseline, after the first dose and after the booster. Thirty-nine subjects without previous exposure to SARS-CoV-2 were vaccinated with the BNT162b2 vaccine. IgM, IgG, and IgA anti-receptor binding domain (RBD) were tested by ELISA. Neutralizing antibodies were evaluated testing the inhibition of RBD binding to ACE2. Antibody avidity was measured by urea avidity ELISA. IgM anti-RBD are produced after the first dose of vaccine and persist after the booster. IgG and IgA anti-RBD antibodies are detected in high amounts in all the subjects after the first dose and further increase after the booster. A few subjects, already after the first dose, produce antibodies inhibiting RBD interaction with ACE2. After the booster, high levels of inhibitory antibodies are detected in all the subjects. Affinity maturation takes place with boosting and IgG anti-RBD avidity increases with the number of immunizations. A less pronounced increase is observed with IgA. These data indicate that the BNT162b2 vaccine can induce high levels of protective antibodies of high avidity in vaccinated subjects; both IgG and IgA anti-RBD antibodies are produced. Further studies are needed to evaluate antibody persistence over time.

20.
Front Med (Lausanne) ; 8: 614829, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33829021

RESUMO

The formation of neutrophil extracellular traps (NETs) is a strategy utilized by neutrophils for capturing infective agents. Extracellular traps consist in a physical net made of DNA and intracellular proteins externalized from neutrophils, where bacteria and viruses are entrapped and killed by proteolysis. A complex series of events contributes to achieving NET formation: signaling from infectious triggers comes first, followed by decondensation of chromatin and extrusion of the nucleosome components (DNA, histones) from the nucleus and, after cell membrane breakdown, outside the cell. NETs are composed of either DNA or nucleosome proteins and hundreds of cytoplasm proteins, a part of which undergo post-translational modification during the steps leading to NETs. There is a thin balance between the production and the removal of circulating NETs from blood where digestion of DNA by circulating DNases 1 and IL3 has a critical role. A delay in NET removal may have consequences for autoimmunity. Recent studies have shown that circulating NET levels are increased in systemic lupus erythematosus (SLE) for a functional block of NET removal mediated by anti-DNase antibodies or, in rare cases, by DNase IL3 mutations. In SLE, the persistence in circulation of NETs signifies elevated concentrations of either free DNA/nucleosome components and oxidized proteins that, in some cases, are recognized as non-self and presented to B-cells by Toll-like receptor 9 (TLR9). In this way, it is activated as an immunologic response, leading to the formation of IgG2 auto-antibody. Monitoring serum NET levels represents a potential new way to herald the development of renal lesions and has clinical implications. Modulating the balance between NET formation and removal is one of the objectives of basic research that are aimed to design new drugs for SLE. Clinical Trial Registration Number: The Zeus study was registered at https://clinicaltrials.gov (study number: NCT02403115).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA