Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
3.
Sci Rep ; 9(1): 7927, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138824

RESUMO

Obesity has become a worldwide epidemic. We have previously reported that systemic administration of pNaKtide which targets the Na/K-ATPase oxidant amplification loop (NKAL) was able to decrease systemic oxidative stress and adiposity in mice fed a high fat and fructose supplemented western diet (WD). As adipocytes are believed to play a central role in the development of obesity and its related comorbidities, we examined whether lentiviral-mediated adipocyte-specific expression of NaKtide, a peptide derived from the N domain of the alpha1 Na/K-ATPase subunit, could ameliorate the effects of the WD. C57BL6 mice were fed a WD, which activated Na/K-ATPase signaling in the adipocytes and induced an obese phenotype and caused an increase in plasma levels of leptin, IL-6 and TNFα. WD also decreased locomotor activity, expression of the D2 receptor and tyrosine hydroxylase in brain tissue, while markers of neurodegeneration and neuronal apoptosis were increased following the WD. Selective adipocyte expression of NaKtide in these mice fed a WD attenuated all of these changes including the brain biochemical alterations and behavioral adaptations. These data suggest that adipocyte derived cytokines play an essential role in the development of obesity induced by a WD and that targeting the adipocyte NKAL loop may serve as an effective therapeutic strategy.


Assuntos
Adipócitos/metabolismo , Dieta Ocidental/efeitos adversos , Obesidade/genética , Fragmentos de Peptídeos/genética , ATPase Trocadora de Sódio-Potássio/genética , Adiposidade , Animais , Modelos Animais de Doenças , Ativação Enzimática , Expressão Gênica , Lentivirus/genética , Masculino , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Estresse Oxidativo , Fragmentos de Peptídeos/metabolismo , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/metabolismo
4.
Int J Mol Sci ; 19(9)2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30200500

RESUMO

The signaling function of the Na/K-ATPase has been established for 20 years and is widely accepted in the field, with many excellent reports and reviews not cited here. Even though there is debate about the underlying mechanism, the signaling function is unquestioned. This short review looks back at the evolution of Na/K-ATPase signaling, from stimulation by cardiotonic steroids (also known as digitalis-like substances) as specific ligands to stimulation by reactive oxygen species (ROS) in general. The interplay of cardiotonic steroids and ROS in Na/K-ATPase signaling forms a positive-feedback oxidant amplification loop that has been implicated in some pathophysiological conditions.


Assuntos
Potássio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Sódio/metabolismo , Animais , Endocitose , Humanos , Ligantes , Camundongos , Modelos Animais , Estresse Oxidativo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA