Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxics ; 12(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38668463

RESUMO

This study explores the potential efficacy of chlorogenic acid (CGA) in mitigating lipopolysaccharide (LPS)-induced cystitis in a mice model. C57BL/6J mice were divided into four groups: normal control (NC), LPS, LPS + low CGA, and LPS + high CGA. Evaluation methods included cystometrogram (CMG), histopathological, western blot, and immunohistological analysis. In the LPS group, CMG revealed abnormal voiding behavior with increased micturition pressure, voided volume (VV), and decreased voided frequency. Low CGA treatment in LPS mice demonstrated improved micturition pressure and inter-contraction intervals (ICI). However, high CGA treatment exhibited prolonged ICI and increased VV, suggesting potential adverse effects. Histological analysis of LPS-treated mice displayed bladder inflammation and interstitial edema. Low CGA treatment reduced interstitial edema and bladder inflammation, confirmed by Masson's trichrome staining. Western blotting revealed increased cytokeratin 20 (K20) expression in the low CGA group, indicating structural abnormalities in the bladder umbrella layer after LPS administration. In conclusion, low CGA treatment positively impacted voiding behavior and decreased bladder edema and inflammation in the LPS-induced cystitis mice model, suggesting its potential as a supplement for inflammation cystitis prevention. However, high CGA treatment exhibited adverse effects, emphasizing the importance of dosage considerations in therapeutic applications.

2.
FASEB J ; 37(4): e22826, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36856608

RESUMO

Age-induced erectile dysfunction (ED) is a convoluted medical condition, and restoring erectile function (EF) under geriatric conditions is highly complicated. Platelet-rich plasma (PRP) treatment is an inexpensive cell-based therapeutic strategy. We have aimed to restore EF in aged-ED rats with PRP as a therapeutic tool. Male rats were grouped into aged and young according to age. The young rats were considered as normal control (NC) and treated with saline. Aged were further divided into 2 groups and treated with intracavernous (IC) PRP and saline. Treatment was scheduled at the 9th and 10th week for NC and 41th and 42th week for aged-ED rats, with EF analysis scheduled on the 12th week for NC and 44th week for aged-ED rats, respectively. Erectile response, immunofluorescence staining, and electron microscopic analyses were performed. IC PRP treatment effectively reduced prostate hyperplasia (PH). EF response indicated a significant increase in crucial EF parameters in PRP-treated aged-ED rats. Histological evidence denoted a rigid and restored development of tunica adventitia of the dorsal artery, decreased vacuolation of the dorsal penile nerve, and structural expansion of the epineurium. Masson's trichrome and immunostaining results affirmed an elevated expression of α-smooth muscle actin (α-SMA) in the corpus cavernosum (CC). Ultrastructure findings revealed that PRP effectively rejuvenated degenerating nerves, preserved endothelium and adherent junctions of corporal smooth muscle, and restored the axonal scaffolds by upregulating neurofilament-H (NF-H) expression. Finally, PRP enhanced neural stability by enhancing the axonal remyelination processes in aged-ED rats. Hence, PRP treatment was proven to restore EF in aged-ED rats, which was considered a safe, novel, cost-effective, and hassle-free strategy for EF restoration in geriatric patients.


Assuntos
Disfunção Erétil , Plasma Rico em Plaquetas , Hiperplasia Prostática , Masculino , Animais , Ratos , Humanos , Hiperplasia , Próstata , Envelhecimento , Degeneração Neural
3.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35328437

RESUMO

Erectile dysfunction (ED) is an agonizing complication of diabetes mellitus (DM) and it is challenging to treat ED in DM patients. Platelet-rich plasma (PRP) is a unique therapeutic strategy comprising intrinsic growth factors. An attempt was made to explore the potentiality of the PRP treatment in DM-induced ED rats in various groups (control, DM-non-ED, DM-ED, and DM-ED treated with PRP). Streptozotocin (STZ) was used to induce DM in rats. The blood glucose levels of the DM rats were maintained at >300 mg/dl. In the 18-week experiment, survival rate, body weight, intracavernous pressure (ICP) variations, and arterial blood pressure were analyzed. The tissue restoration results were validated by histological, immunofluorescence, and transmission electron microscopic analysis. PRP treatment of DM-ED rats significantly increased all parameters of erectile function compared to pre-treatment of PRP and DM-ED treated with vehicle. The histological results revealed that PRP treatment substantially enhanced the regeneration of myelinated nerves and decreased the atrophy of corporal smooth muscle. Notably, the PRP treatment immensely enhanced the survival rate in post-surgery DM-ED rats. These results indicated certain benefits of PRP treatment in delaying damage and preventing post-surgery complications in DM patients. Hence, PRP treatment is a novel multifactorial strategy for DM-ED patients.


Assuntos
Diabetes Mellitus Experimental , Disfunção Erétil , Plasma Rico em Plaquetas , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/terapia , Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/terapia , Humanos , Masculino , Ereção Peniana/fisiologia , Pênis/inervação , Ratos , Ratos Sprague-Dawley , Estreptozocina
4.
Int J Mol Sci ; 23(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35216309

RESUMO

This study explored the specific effects of ketamine on bladder function followed by a sequence of histological changes in a rat bladder at fixed time course intervals. The rats were grouped into normal control and experimental animals, and ketamine (100 mg/kg/day) was administrated to the experimental animals for 2, 4, and 8 weeks, respectively; similarly, the control animals received saline. All animals were evaluated for bladder function and histological responses to the treatment. Ultrastructural changes were observed by transmission electron microscopy (TEM). The results showed progressive bladder dysfunctions with hyperactive bladder conditions according to the time course and frequency of exposure to ketamine. Significantly, decreased inter contraction intervals, residual urine volume, peak micturition pressure, and increased micturition frequency were observed. Bladder histology results revealed substantial inflammation and comprehensive submucosa edema in week 2 and 4 rats along with fibrosis and significant bladder detrusor hypertrophy in week 8 rats. TEM analysis revealed bladder wall thickening, deformed blood vessels, detrusor hypertrophy, wobbled gap junction, and barrier dysfunction at different time course levels in experimental animals. These results provided a profound knowledge about the prognosis and step-by-step pathophysiology of the disease, which might help in developing new therapeutic interventions.


Assuntos
Cistite , Ketamina , Animais , Hipertrofia/patologia , Ketamina/farmacologia , Microscopia Eletrônica de Transmissão , Ratos , Ratos Sprague-Dawley , Bexiga Urinária/patologia
5.
PLoS One ; 15(12): e0243452, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33270757

RESUMO

Bladder dysfunction is a common phenomenon in Parkinson's disease (PD) patients. A research attempt was made to analyze the voiding efficiency (VE) and bladder functions in rats with PD induced by unilateral or bilateral injections of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle. PD rats were divided into unilateral- and bilateral-injected groups and subjected to rotation and beam walking tests. Further, the experimental rats underwent cystometric measurements for analyses of bladder dysfunction and VE. Immunohistochemical analysis was performed to analyze the dopaminergic neuron depletion on the target area. Outcomes of the rotation and beam walking tests revealed the extent of parkinsonism in the experimental rats. Urodynamic observations denoted that rats with unilateral PD exhibited a significantly decreased VE (from 68.3±3.5% to 32.7±5.8%), while rats with bilateral PD displayed a much-reduced and substantially lower level of VE of 18.3±5.1% compared to the control value and to that of rats with unilateral PD. Rats with bilateral PD showed more-extensive behavioral deficits and urodynamic changes than did rats with unilateral PD. These significant changes in motor, behavioral, bladder function and VE were due to an extensive degeneration of dopaminergic neurons in the substantia nigra region on both sides of the brain. The obtained results were substantiated with appropriate immunohistochemical results.


Assuntos
Neurônios Dopaminérgicos/patologia , Oxidopamina/administração & dosagem , Doença de Parkinson/patologia , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Eletromiografia , Masculino , Oxidopamina/farmacologia , Doença de Parkinson/metabolismo , Ratos , Ratos Sprague-Dawley , Bexiga Urinária/fisiologia , Urodinâmica
6.
Brain Sci ; 10(11)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198259

RESUMO

OBJECTIVE: Traumatic brain injuries (TBIs) are a prime public health challenge with a high incidence of mortality, and also reflect severe economic impacts. One of their severe symptoms is bladder dysfunction. Conventional therapeutic methods are not effective in managing bladder dysfunction. Henceforth, a research endeavor was attempted to explore a new therapeutic approach for bladder dysfunction through deep brain stimulation (DBS) procedures in a TBI animal model. METHODS: TBI in this animal model was induced by the weight-drop method. All rats with an induced TBI were housed for 4 weeks to allow severe bladder dysfunction to develop. Subsequently, an initial urodynamic measurement, the simultaneous recording of cystometric (CMG) and external urethral sphincter electromyography (EUS-EMG) activity was conducted to evaluate bladder function. Further, standard DBS procedures with varying electrical stimulation parameters were executed in the target area of the pedunculopontine tegmental nucleus (PPTg). Simultaneously, urodynamic measurements were re-established to compare the effects of DBS interventions on bladder functions. RESULTS: From the variable combinations of electrical stimulation, DBS at 50 Hz and 2.0 V, significantly reverted the voiding efficiency from 39% to 69% in TBI rats. Furthermore, MRI studies revealed the precise localization of the DBS electrode in the target area. CONCLUSIONS: The results we obtained showed an insightful understanding of PPTg-DBS and its therapeutic applications in alleviating bladder dysfunction in rats with a TBI. Hence, the present study suggests that PPTg-DBS is an effective therapeutic strategy for treating bladder dysfunction.

7.
Brain Sci ; 9(11)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739594

RESUMO

Traumatic brain injuries (TBIs) are a serious public health issue worldwide with increased mortality as well as severe disabilities and injuries caused by falls and road accidents. Unfortunately, there is no approved therapy for TBIs, and bladder dysfunction is a striking symptom. Accordingly, we attempted to analyze bladder dysfunction and voiding efficiency in rats with a TBI at different time-course intervals. Time-dependent analyses were scheduled from the next day until four weeks after a TBI. Experimental animals were grouped and analyzed under the above conditions. Cystometric measurements were used for this analysis and were further elaborated as external urethral sphincter electromyographic (EUS-EMG) activity and cystometrogram (CMG) measurements. Moreover, magnetic resonance imaging (MRI) studies were conducted to investigate secondary injury progression in TBI rats, and results were compared to normal control (NC) rats. Results of EUS-EMG revealed that the burst period, active period, and silent period in TBI rats were drastically reduced compared to NC rats, but they increased later and reached a stagnant phase. Likewise, in CMG measurements, bladder function, the voided volume, and voiding efficiency decreased immediately after the TBI, and other parameters like the volume threshold, inter-contraction interval, and residual volume drastically increased. Later, those levels changed, and all observed results were compared to NC rats. MRI results revealed the prevalence of cerebral edema and the progression of secondary injury. All of the above-stated results of the experiments were extensively substantiated. Thus, these innovative findings of our study model will surely pave the way for new therapeutic interventions for TBI treatment and prominently highlight their applications in the field of neuroscience in the future.

8.
Int Urol Nephrol ; 51(1): 41-52, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30474784

RESUMO

OBJECTIVE: Traumatic brain injury (TBI) is a global scenario with high mortality and disability, which does not have an effectual and approved therapy till now. Bladder dysfunction is a major symptom after TBI, and this study deals with the alleviation of bladder function in TBI rats, with the aid of deep brain stimulations (DBS). METHODS: TBI was induced by weight drop model (WDM) and standardized with the experimental subjects with variable heights for weight dropping. The rats survived after TBI were considered for bladder dysfunction observations. DBS with variable stimulation parameters like cystometric analysis and MRI studies were also performed. RESULTS: After experimental studies, TBI 2-m-height crash was determined as suitable parameter due to minimal mortality rate and significant reduction in the voiding efficiency from 67 to 28%, whereas DBS significantly reversed the value of voiding efficiency to 65-84%. MRI studies revealed the severity of TBI impact and DBS localization. CONCLUSION: The results showed profound therapeutic effect of PnO-DBS on voiding functions and bladder control on TBI rats.


Assuntos
Lesões Encefálicas Traumáticas , Estimulação Encefálica Profunda/métodos , Doenças Urológicas , Animais , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/fisiopatologia , Modelos Animais de Doenças , Ratos , Resultado do Tratamento , Bexiga Urinária/fisiopatologia , Micção/fisiologia , Doenças Urológicas/etiologia , Doenças Urológicas/fisiopatologia , Doenças Urológicas/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA