Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Res ; 254: 121341, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38422693

RESUMO

Highly urban coastal communities in low lying areas and with high water tables are vulnerable to sea-level rise and to corresponding increases in coastal groundwater levels. Stormwater conveyance systems are under increased risk. Rising groundwater levels affect the hydraulics of the stormwater system thereby increasing contaminant transport, for example the fecal indicator bacteria enterococci, to coastal waters. This study offers a unique opportunity to evaluate the impacts of increased contaminant transport on marine coastal environments. Here we assessed historic and recent coastal water quality, stormwater sampling data, groundwater monitoring and tidal elevations near the coastline, in the context of altered hydraulics within the system. Two pathways of enterococci to marine waters were identified. Direct discharge of contaminated stormwater runoff via the stormwater outfalls and tidally driven contaminated groundwater discharge. As sea level continues to rise, we hypothesize that a diminished unsaturated zone coupled with altered hydraulic conditions at the coastal groundwater zone will facilitate the transport of enterococci from urban sediments to the study site (Park View Waterway in Miami Beach, FL USA). We recommend improvements to the stormwater conveyance system, and maintenance of the sanitary sewer system to mitigate these impacts and minimize transport of enterococci, and other stormwater pollutants to coastal waters. The results of this study can be useful to interpret high enterococci levels in low lying coastal areas where groundwater is influenced by rising sea water levels.


Assuntos
Poluentes Ambientais , Água Subterrânea , Enterococcus , Elevação do Nível do Mar , Monitoramento Ambiental
2.
Environ Monit Assess ; 191(10): 630, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31520148

RESUMO

A repeated-measures coral monitoring program established as part of the PortMiami expansion program provided an unparalleled opportunity to quantify the levels of coral mortality that resulted from both local dredging stress and as a result of climate-related bleaching stress and the subsequent outbreak of a white-plague-like disease (WPD) epizootic. By comparing measured rates of coral mortality at 30 sites throughout Miami-Dade County to predicted mortality levels from three different coral mortality scenarios, we were able to evaluate the most likely source of coral mortality at both the local and regional levels during the 2014-2016 coral bleaching and WPD event. These include scenarios that assume (1) local dredging increases coral disease mortality, (2) regional climate-related stress is the proximal driver of coral disease mortality, and (3) local and regional stressors are both responsible for coral disease mortality. Our results show that species-specific susceptibility to disease is the determining factor in 93.3% of coral mortality evaluated throughout Miami-Dade County, whereas local dredging stress only accurately predicted coral mortality levels 6.7% of the time. None of the monitoring locations adjacent to the PortMiami expansion had levels of coral mortality that exceeded predictions when coral community composition was taken into account. The novel result of this analysis is that climate-mediated coral disease mortality was more than an order of magnitude (14x) more deadly than even the largest marine construction project performed in the USA, and that until climate change is addressed, it is likely that local attempts to manage coral resilience will continue to fail.


Assuntos
Antozoários/crescimento & desenvolvimento , Mudança Climática/estatística & dados numéricos , Recifes de Corais , Monitoramento Ambiental/métodos , Mortalidade , Animais , Surtos de Doenças , Florida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA