Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Clin Case Rep ; 12(9): e9458, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39314907

RESUMO

Key Clinical Message: Uterine artery embolization demonstrated significant efficacy in the treatment of utero-cervical cancer. This minimally invasive procedure holds promise as a valuable adjunct therapy, potentially offering improved outcomes and reduced morbidity in select cases. Further research is warranted to validate its broader clinical utility. Abstract: Vaginal bleeding is a common complication of Cervical cancer that can be considered a critical emergency. Conventional hemostatic treatments may occasionally help reduce the bleeding but are not an effective long-term solution. Uterine Artery Embolization, a minimally invasive intervention, can halt the bleeding, achieving hemostasis, while removing many of the complications that alternative interventions carry. We outline a case study of a patient with extensive vaginal bleeding who had uterocervical malignancy and talk about the benefits of uterine artery embolisation for therapeutic management.

2.
World J Clin Cases ; 12(25): 5657-5661, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39247733

RESUMO

This editorial comments on the study by Liu et al investigating pancreatic metastasis of clear cell sarcoma (CCS) published in the World Journal of Clinical Cases. CCS is a rare and aggressive melanocytic tumor, that typically arises from tendons and aponeuroses of the limbs, and metastasizes to the lungs, bones, and brain. However, pancreatic metastasis has rarely been reported, presenting unique diagnostic and therapeutic challenges. Elucidating the clinical characteristics, imaging features, prognostic factors, and treatment outcomes of patients with pancreatic CCS metastasis is crucial. Surgery remains an effective management strategy for CCS. However, the high recurrence rate and low effectiveness of traditional adjuvant treatments necessitate a shift towards more personalized and targeted treatment plans. Research is needed to investigate and validate novel therapeutic approaches specifically tailored to the distinct genetic and molecular characteristics of rare malignancies like CCS. Additionally, the development of late metastases after a long disease-free interval is common in CCS patients. Therefore, routine postoperative surveillance for metastasis using computed tomography, magnetic resonance imaging, bone scans, and positron emission tomography scans is crucial. Moving forward, enhanced collaboration, investigation, and creative thinking among scientists, medical professionals, and legislators are essential to gain a deeper understanding of these rare presentations.

3.
Med Int (Lond) ; 4(6): 63, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161883

RESUMO

Vein of Galen malformation (VOGM) is a rare congenital arteriovenous malformation affecting the pediatric population, characterized by a fistula between the diencephalon and a dilated vein of Galen. The present study reports the case of a 6-month-old male infant referred for developmental delays and abnormal head circumference. A clinical examination revealed macrocephaly, dilated scalp veins and neurological abnormalities. Neuroimaging confirmed a large VOGM with associated hydrocephalus. A multidisciplinary team devised a treatment plan involving endovascular embolization and ventriculoperitoneal shunt placement. The post-operative recovery exhibited an improvement in neurodevelopmental milestones and a reduced head circumference. Generally, the management of VOGM requires a comprehensive approach, including early diagnosis, precise imaging and timely intervention. The case described herein highlights the importance of interventional radiology in planning a management plan and the novel kissing microcatheter endovascular embolization technique.

4.
Animals (Basel) ; 14(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791674

RESUMO

Sebaceous gland tumors are neoplasms originating from the sebaceous gland and are the third most common type of skin tumor, accounting for 21-35% of all cutaneous neoplasms in dogs. According to their histopathological characteristics, sebaceous gland tumors can be classified into adenoma as a benign tumor and epithelioma as a malignant tumor. Sebaceous epithelioma is distinguished from sebaceous adenoma by containing 90% or more reserve cells. However, this simple numerical criterion is insufficient to histologically distinguish between epitheliomas and adenomas. In addition, sebaceoma in humans, a similar tumor to sebaceous epithelioma, is a term used for tumors with more than 50% of reserve cells, unlike epithelioma. Therefore, we aimed to compare and characterize the histological and immunohistochemical profiles of comprehensive sebaceous adenoma, epithelioma, and borderline tumors that have more than 50% but less than 90% of reserve cells. A total of 14 canine sebaceous tumors were diagnosed as seven adenomas, four borderline tumors, and three epitheliomas. Histologically, the sebaceous adenomas showed nodules consisting of mature sebocytes surrounded by monolayer basaloid cells. In contrast, the portion of the reserve cells was increased, the portion of lipidized cells was decreased, and the majority of lipidized cells were found to be immature in sebaceous epithelioma. In the sebaceous adenomas, necrosis was not observed and mitotic figures were rarely seen. However, necrosis and mitotic figures were highly frequent in both borderline tumor and sebaceous epithelioma. Immunohistochemistry revealed that borderline tumor and sebaceous epithelioma showed significantly higher expression against Ki-67 than sebaceous adenoma. We conclude that it is more accurate to employ the cut-off value of 50% reserve cells in humans rather than the current 90% reserve cells for classifying sebaceous gland tumors in dogs, thereby providing new insight into the characterization of the sebaceous gland tumors.

5.
Clin Case Rep ; 12(3): e8656, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38476832

RESUMO

Key Clinical Message: Chikungunya encephalitis, though rare, warrants clinical attention due to its severe complications. Early identification and appropriate management are crucial for improved outcomes in patients with this rare manifestation of chikungunya virus (CHIKV) infection. Abstract: CHIKV infection is commonly associated with fever and joint pains, but neurological complications such as encephalitis are rare. Here, we present a unique case of confirmed chikungunya encephalitis in a 12-year-old male exhibiting atypical neurological symptoms. The diagnostic journey involved comprehensive neuroimaging and serological investigations, revealing intriguing findings on magnetic resonance imaging and positive CHIKV RNA in serum and cerebrospinal fluid. We discuss the clinical presentation, radiological characteristics, and management strategies, emphasizing the importance of recognizing this uncommon neurological manifestation of CHIKV infection.

6.
Biomedicines ; 12(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38540198

RESUMO

Cardiovascular thromboembolic diseases and cancer continue to be a leading cause of death and disability worldwide. Therefore, it is crucial to advance their diagnoses and treatment in the context of individualized medicine. However, the disease specificity of the currently available markers is limited. Based on analyses of a subset of peptides and matching proteins in disease vs. healthy platelets, scientists have recently shown that focused platelet proteomics enables the quantification of disease-specific biomarkers in humans. In this review, we explored the potential of accurate platelet proteomic research, which is required to identify novel diagnostic and pharmaceutical targets by comprehending the proteome variety of healthy individuals and patients for personalized and precision medicine.

7.
Mol Neurobiol ; 61(9): 6217-6244, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38285288

RESUMO

Type-1 IFN (interferon)-associated innate immune response is increasingly getting attention in neurodegenerative and metabolic diseases like type 2 diabetes (T2DM). However, its significance in T2DM/lipotoxicity-induced neuroglia changes and cognitive impairment is missing. The present study aims to evaluate the involvement of cGAS (cyclic GMP-AMP synthase)-STING (stimulator of interferon gene), IRF3 (interferon regulatory factor-3), TBK (TANK binding kinase)-mediated Type-1 IFN response in the diabetic brain, and lipotoxicity (palmitate-bovine serum albumin conjugate/PA-BSA)-induced changes in cells (neuro2a and BV2). T2DM was induced in C57/BL6 mice by feeding on a high-fat diet (HFD, 60% Kcal) for 16 weeks and injecting a single dose of streptozotocin (100 mg/kg, i.p) in the 12th week. Plasma biochemical parameter analysis, neurobehavioral assessment, protein expression, and quantitative polymerase chain reaction study were carried out to decipher the hypothesis. T2DM-associated metabolic and lipotoxic stress led to mitochondrial impairment causing leakage of mtDNA to the cytoplasm further commencing cGAS activation and its downstream signaling. The diseased hippocampus and cortex showed decreased expression of synaptophysin (p < 0.01) and PSD-95 (p < 0.01, p < 0.05) with increased expression of cGAS (p < 0.001), p-STING (p < 0.001), p-STAT1 (signal transducer and activator of transcription) (p < 0.01), and IFN-ß (p < 0.001) compared to normal control. The IFN-ß/p-STAT1-mediated microglia activation was executed employing a conditioned media approach. C-176, a selective STING inhibitor, alleviated cGAS/p-STING/IFN-ß expression and proinflammatory microglia/M1-associated markers (CD16 expression, CXCL10, TNF-α, IL-1ß mRNA fold change) in the diabetic brain. The present study suggests Type-1IFN response may result in neuroglia dyshomeostasis affecting normal brain function. Alleviating STING signaling has the potential to protect T2DM-associated central ailment.


Assuntos
Disfunção Cognitiva , DNA Mitocondrial , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Interferon Tipo I , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Nucleotidiltransferases , Transdução de Sinais , Animais , Nucleotidiltransferases/metabolismo , Disfunção Cognitiva/metabolismo , Proteínas de Membrana/metabolismo , DNA Mitocondrial/metabolismo , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Masculino , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Transdução de Sinais/efeitos dos fármacos , Interferon Tipo I/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Camundongos , Fator Regulador 3 de Interferon/metabolismo , Dieta Hiperlipídica/efeitos adversos , Proteínas Serina-Treonina Quinases/metabolismo
8.
Int Immunopharmacol ; 126: 111278, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38011768

RESUMO

Cognitive deficit is one of the challenging complications of type 2 diabetes. Sphingosine 1- phosphate receptors (S1PRs) have been implicated in various neurodegenerative and metabolic disorders. The association of S1PRs and cognition in type 2 diabetes remains elusive. Microglia-mediated neuronal damage could be the thread propagating cognitive deficit. The effects of S1PR2 inhibition on cognition in high-fat diet and streptozotocin-induced diabetic mice were examined in this work. We further assessed microglial activation and putative microglial polarisation routes. Cognitive function loss was observed after four months of diabetes induction in Type 2 diabetes animal model. JTE013, an S1PR2 inhibitor, was used to assess neuroprotection against cognitive decline and neuroinflammation in vitro and in vivo diabetes model. JTE013 (10 mg/kg) improved synaptic plasticity by upregulating psd95 and synaptophysin while reducing cognitive decline and neuroinflammation. It further enhanced anti-inflammatory microglia in the hippocampus and prefrontal cortex (PFC), as evidenced by increased Arg-1, CD206, and YM-1 levels and decreased iNOS, CD16, and MHCII levels. TIGAR, TP53-induced glycolysis and apoptosis regulator, might facilitate the anti-inflammatory microglial phenotype by promoting oxidative phosphorylation and decreasing apoptosis. However, since p53 is a TIGAR suppressor, inhibiting p53 could be beneficial. S1PR2 inhibition increased p-Akt and TIGAR levels and reduced the levels of p53 in the PFC and hippocampus of type 2 diabetic mice, thereby decreasing apoptosis. In vitro, palmitate was used to imitate sphingolipid dysregulation in BV2 cells, followed by conditioned media exposure to Neuro2A cells. JTE013 rescued the palmitate-induced neuronal apoptosis by promoting the anti-inflammatory microglia. In the present study, we demonstrate that the inhibition of S1PR2 improves cognitive function and skews microglia toward anti-inflammatory phenotype in type 2 diabetic mice, thereby promising to be a potential therapy for neuroinflammation.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Cognição , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Microglia , Doenças Neuroinflamatórias , Palmitatos/farmacologia , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/metabolismo
9.
Life (Basel) ; 13(6)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37374185

RESUMO

EVs are membranous subcellular structures originating from various cells, including platelets which consist of biomolecules that can modify the target cell's pathophysiological functions including inflammation, cell communication, coagulation, and metastasis. EVs, which are known to allow the transmission of a wide range of molecules between cells, are gaining popularity in the fields of subcellular treatment, regenerative medicine, and drug delivery. PEVs are the most abundant EVs in circulation, being produced by platelet activation, and are considered to have a significant role in coagulation. PEV cargo is extremely diverse, containing lipids, proteins, nucleic acids, and organelles depending on the condition that induced their release and can regulate a wide range of biological activities. PEVs, unlike platelets, can overcome tissue barriers, allowing platelet-derived contents to be transferred to target cells and organs that platelets cannot reach. Their isolation, characterization, and therapeutic efficacy, on the other hand, are poorly understood. This review summarizes the technical elements of PEV isolation and characterization methods as well as the pathophysiological role of PEVs, including therapeutic potential and translational possibility in diverse disciplines.

11.
Animals (Basel) ; 13(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37106862

RESUMO

Glucocorticoids have been commonly used in the treatment of inflammation and immune-mediated diseases in human beings and small animals such as cats and dogs. However, excessive use can lead to Cushing's syndrome along with several thrombotic and cardiovascular diseases. Although it is well-known that glucocorticoids exert a significant effect on coagulation, the effect of cortisol on platelet function is much less clear. Thus, we aimed to study the effects of prednisolone, one of the commonly used glucocorticoids, on the regulation of platelet function using murine platelets. We first evaluated the concentration-dependent effect of prednisolone on 2-MeSADP-induced platelet function and found that the 2-MeSADP-induced secondary wave of aggregation and dense granule secretion were completely inhibited from 500 nM prednisolone. Since 2-MeSADP-induced secretion and the resultant secondary wave of aggregation are mediated by TxA2 generation, this result suggested a role of prednisolone in platelet TxA2 generation. Consistently, prednisolone did not affect the 2-MeSADP-induced aggregation in aspirinated platelets, where the secondary wave of aggregation and secretion were blocked by eliminating the contribution of TxA2 generation by aspirin. In addition, thrombin-induced platelet aggregation and secretion were inhibited in the presence of prednisolone by inhibiting the positive-feedback effect of TxA2 generation on platelet function. Furthermore, prednisolone completely inhibited 2-MeSADP-induced TxA2 generation, confirming the role of prednisolone in TxA2 generation. Finally, Western blot analysis revealed that prednisolone significantly inhibited 2-MeSADP-induced cytosolic phospholipase A2 (cPLA2) and ERK phosphorylation in non-aspirinated platelets, while only cPLA2 phosphorylation, but not ERK phosphorylation, was significantly inhibited by prednisolone in aspirinated platelets. In conclusion, prednisolone affects platelet function by the inhibition of TxA2 generation through the regulation of cPLA2 phosphorylation, thereby shedding light on its clinical characterization and treatment efficacy in dogs with hypercortisolism in the future.

12.
Metab Brain Dis ; 38(5): 1581-1612, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36897515

RESUMO

Type-2 diabetes mellitus (T2DM) is associated with neuroinflammation and cognitive decrement. Necroptosis programmed necrosis is emerging as the major contributing factor to central changes. It is best characterized by the upregulation of p-RIPK(Receptor Interacting Kinase), p-RIPK3, and the phosphorylated-MLKL (mixed-lineage kinase domain-like protein). The present study aims to evaluate the neuroprotective effect of Necrostatin (Nec-1S), a p-RIPK inhibitor, on cognitive changes in the experimental T2DM model in C57BL/6 mice and lipotoxicity-induced neuro-microglia changes in neuro2A and BV2 cells. Further, the study also explores whether Nec-1S would restore mitochondrial and autophago-lysosomal function.T2DM was developed in mice by feeding them a high-fat diet (HFD) for 16 weeks and injecting a single dose of streptozotocin (100 mg/kg, i.p) on the 12th week. Nec-1S was administered for 3 weeks at (10 mg/kg, i.p) once every 3 days. Lipotoxicity was induced in neuro2A, and BV2 cells using 200 µM palmitate/bovine serum albumin conjugate. Nec-1S (50 µM), and GSK-872(10 µM) were further used to explore their relative effect. The neurobehavioral performance was assessed using mazes and task-assisted performance tests. To decipher the hypothesis plasma parameters, western blot, immunofluorescence, microscopy, and quantitative reverse transcription-PCR studies were carried out. The Nec-1S treatment restored cognitive performance and reduced the p-RIPK-p-RIPK3-p-MLKL mediated neuro-microglia changes in the brain and in cells as well, under lipotoxic stress. Nec-1S reduced tau, and amyloid oligomer load. Moreover, Nec-1S restored mitochondrial function and autophago-lysosome clearance. The findings highlight the central impact of metabolic syndrome and how Nes-1S, by acting as a multifaceted agent, improved central functioning.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Camundongos , Animais , Microglia/metabolismo , Camundongos Endogâmicos C57BL , Diabetes Mellitus Experimental/tratamento farmacológico , Fatores de Transcrição/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Cognição , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteínas Quinases/metabolismo
13.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982853

RESUMO

Coumarin derivatives have been recognized for their antithrombotic, anti-inflammatory, and antioxidant properties, and daphnetin is one of the natural coumarin derivatives isolated from Daphne Koreana Nakai. Although the pharmacological value of daphnetin is well documented in diverse biological activities, its antithrombotic effect has not been studied to date. Here, we characterized the role and underlying mechanism of daphnetin in the regulation of platelet activation using murine platelets. In order to check the effect of daphnetin on platelet function, we first measured the effect of daphnetin on platelet aggregation and secretion. Collagen-induced platelet aggregation and dense granule secretion were partially inhibited by daphnetin. Interestingly, 2-MeSADP-induced secondary waves of aggregation and secretion were completely inhibited by daphnetin. It is known that 2-MeSADP-induced secretion and the resultant secondary wave of aggregation are mediated by the positive feedback effect of thromboxane A2 (TxA2) generation, suggesting the important role of daphnetin on TxA2 generation in platelets. Consistently, daphnetin did not affect the 2-MeSADP-induced platelet aggregation in aspirinated platelets where the contribution of TxA2 generation was blocked. Additionally, platelet aggregation and secretion induced by a low concentration of thrombin, which is affected by the positive feedback effect of TxA2 generation, were partially inhibited in the presence of daphnetin. Importantly, 2-MeSADP- and thrombin-induced TxA2 generation was significantly inhibited in the presence of daphnetin, confirming the role of daphnetin on TxA2 generation. Finally, daphnetin significantly inhibited 2-MeSADP-induced cytosolic phospholipase A2 (cPLA2) and ERK phosphorylation in non-aspirinated platelets. Only cPLA2 phosphorylation, not ERK phosphorylation, was significantly inhibited by daphnetin in aspirinated platelets. In conclusion, daphnetin plays a critical role in platelet function by inhibiting TxA2 generation through the regulation of cPLA2 phosphorylation.


Assuntos
Trombina , Tromboxanos , Animais , Camundongos , Plaquetas , Fibrinolíticos/farmacologia , Agregação Plaquetária , Trombina/farmacologia , Tromboxano A2 , Umbeliferonas/farmacologia , Fosfolipases A2 Citosólicas/metabolismo
14.
Behav Brain Res ; 446: 114415, 2023 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-36997095

RESUMO

Sphingosine-1-phosphate (S1P) is emerging as a crucial sphingolipid modulating neuroinflammation and cognition. S1P levels in the brain have been found to be decreased in cognitive impairment. S1P lyase (S1PL) is the key enzyme in metabolizing S1P and has been implicated in neuroinflammation. This study evaluated the effect of S1PL inhibition on cognition in type 2 diabetic mice. Fingolimod (0.5 mg/kg and 1 mg/kg) rescued cognition in high-fat diet and streptozotocin-induced diabetic mice, as evident in the Y maze and passive avoidance test. We further evaluated the effect of fingolimod on the activation of microglia in the pre-frontal cortex (PFC) and hippocampus of diabetic mice. Our study revealed that fingolimod inhibited S1PL and promoted anti-inflammatory microglia in both PFC and hippocampus of diabetic mice as it increased Ym-1 and arginase-1. The levels of p53 and apoptotic proteins (Bax and caspase-3) were elevated in the PFC and hippocampus of type 2 diabetic mice which fingolimod reversed. The underlying mechanism promoting anti-inflammatory microglial phenotype was also explored in this study. TIGAR, TP53-associated glycolysis and apoptosis regulator, is known to foster anti-inflammatory microglia and was found to be downregulated in the brain of type 2 diabetic mice. S1PL inhibition decreased the levels of p53 and promoted TIGAR, thereby increasing anti-inflammatory microglial phenotype and inhibiting apoptosis in the brain of diabetic mice. Our study reveals that S1PL inhibition could be beneficial in mitigating cognitive deficits in diabetic mice.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Camundongos , Animais , Esfingosina/farmacologia , Esfingosina/metabolismo , Cloridrato de Fingolimode/metabolismo , Cloridrato de Fingolimode/farmacologia , Microglia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Doenças Neuroinflamatórias , Cognição , Diabetes Mellitus Tipo 2/metabolismo , Fosfatos/metabolismo , Fosfatos/farmacologia , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo
15.
Int Immunopharmacol ; 116: 109793, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36731149

RESUMO

Piceatannol (PCN), a SIRT1 activator, regulates multiple oxidative stress mechanism and has anti-inflammatory potential in various inflammatory conditions. However, its role in Diabetic insulted peripheral neuropathy (DN) remains unknown. Oxidative stress and mitochondrial dysfunction are major contributing factors to DN. Myriad studies have proven that sirtuin1 (SIRT1) stimulation convalesce nerve functions by activating mitochondrial functions like mitochondrial biogenesis and mitophagy. Diabetic neuropathy (DN) was provoked by injecting streptozotocin (STZ) at a dose of 55 mg/kg, i.p to male Sprague Dawley (SD) rats. Mechanical, thermal hyperalgesia was evaluated by using water immersion, Vonfrey Aesthesiometer, and Randall Sellito Calipers. Motor, sensory nerve conduction velocity was measured using Power Lab 4sp system whereas The Laser Doppler system was used to evaluate nerve blood flow. To induce hyperglycemia for the in vitro investigations, high glucose (HG) (30 mM) conditions were applied to Neuro2a cells. At doses of 5 and 10 µM, PCN was examined for its role in SIRT1 and Nrf2 activation. HG-induced N2A cells, reactive oxygen exposure, mitochondrial superoxides and mitochondrial membrane potentials were restored by PCN exposure, and their neurite outgrowth was enhanced. Peroxisome proliferator activated receptor-gamma coactivator-1α (PGC-1α) directed mitochondrial biogenesis was induced by increased SIRT1 activation by piceatannol. SIRT1 activation also enhanced Nrf2-mediated antioxidant signalling. Our study results inferred that PCN administration can counteract the decline in mitochondrial function and antioxidant activity in diabetic rats and HG-exposed N2A cells by increasing the SIRT1 and Nrf2 activities.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Hiperglicemia , Síndromes Neurotóxicas , Ratos , Masculino , Animais , Neuropatias Diabéticas/tratamento farmacológico , Ratos Sprague-Dawley , Neuroproteção , Mitofagia , Sirtuína 1/metabolismo , Fator 2 Relacionado a NF-E2 , Antioxidantes/farmacologia , Estresse Oxidativo , Hiperglicemia/tratamento farmacológico
16.
Curr Neuropharmacol ; 21(3): 493-516, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35524671

RESUMO

Blood-Brain Barrier (BBB) acts as a highly impermeable barrier, presenting an impediment to the crossing of most classical drugs targeted for neurodegenerative diseases including Parkinson's disease (PD). About the nature of drugs and other potential molecules, they impose unavoidable doserestricted limitations eventually leading to the failure of therapy. However, many advancements in formulation technology and modification of delivery approaches have been successful in delivering the drug to the brain in the therapeutic window. The nose to the brain (N2B) drug delivery employing the nanoformulation, is one such emerging delivery approach, overcoming both classical drug formulation and delivery-associated limitations. This latter approach offers increased bioavailability, greater patient acceptance, lesser metabolic degradation of drugs, circumvention of BBB, ample drug loading along with the controlled release of the drugs. In N2B delivery, the intranasal (IN) route carries therapeutics firstly into the nasal cavity followed by the brain through olfactory and trigeminal nerve connections linked with nasal mucosa. The N2B delivery approach is being explored for delivering other biologicals like neuropeptides and mitochondria. Meanwhile, this N2B delivery system is associated with critical challenges consisting of mucociliary clearance, degradation by enzymes, and drug translocations by efflux mechanisms. These challenges finally culminated in the development of suitable surfacemodified nano-carriers and Focused- Ultrasound-Assisted IN as FUS-IN technique which has expanded the horizons of N2B drug delivery. Hence, nanotechnology, in collaboration with advances in the IN route of drug administration, has a diversified approach for treating PD. The present review discusses the physiology and limitation of IN delivery along with current advances in nanocarrier and technical development assisting N2B drug delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Nanotecnologia , Mucosa Nasal , Doença de Parkinson , Humanos , Doença de Parkinson/terapia , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Mucosa Nasal/inervação , Mucosa Nasal/metabolismo
17.
Mol Neurobiol ; 60(2): 901-922, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36385233

RESUMO

Sphingosine receptors (S1PRs) are implicated in the progression of neurodegenerative diseases and metabolic disorders like obesity and type 2 diabetes (T2D). The link between S1PRs and cognition in type 2 diabetes, as well as the mechanisms that underpin it, are yet unknown. Neuroinflammation is the common pathology shared among T2D and cognitive impairment. However, the interplay between the M1 and M2 polarization state of microglia, a primary driver of neuroinflammation, could be the driving factor for impaired learning and memory in diabetes. In the present study, we investigated the effects of fingolimod (S1PR1 modulator) on cognition in high-fat diet and streptozotocin-induced diabetic mice. We further assessed the potential pathways linking microglial polarization and cognition in T2D. Fingolimod (0.5 mg/kg and 1 mg/kg) improved M2 polarization and synaptic plasticity while ameliorating cognitive decline and neuroinflammation. Sphingolipid dysregulation was mimicked in vitro using palmitate in BV2 cells, followed by conditioned media exposure to Neuro2A cells. Mechanistically, type 2 diabetes induced microglial activation, priming microglia towards the M1 phenotype. In the hippocampus and cortex of type 2 diabetic mice, there was a substantial drop in pSTAT3, which was reversed by fingolimod. This protective effect of fingolimod on microglial M2 polarization was primarily suppressed by selective jmjd3 blockade in vitro using GSK-J4, revealing that jmjd3 was involved downstream of STAT3 in the fingolimod-enabled shift of microglia from M1 to M2 polarization state. This study suggested that fingolimod might effectively improve cognition in type 2 diabetes by promoting M2 polarization.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animais , Camundongos , Polaridade Celular , Cognição , Disfunção Cognitiva/complicações , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/uso terapêutico , Microglia/metabolismo , Doenças Neuroinflamatórias , Transdução de Sinais
18.
J Alzheimers Dis ; 94(s1): S109-S124, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36463449

RESUMO

BACKGROUND: Parkinson's disease (PD) is an age-related progressive multifactorial, neurodegenerative disease. The autophagy and Keap1-Nrf2 axis system are both implicated in the oxidative-stress response, metabolic stress, and innate immunity, and their dysregulation is associated with pathogenic processes in PD. Phloretin (PLT) is a phenolic compound reported possessing anti-inflammatory and antioxidant activities. OBJECTIVE: To evaluate the neuroprotective potential of PLT in PD via modulating the autophagy-antioxidant axisMethods:The neuroprotective effect of PLT was evaluated in vitro using rotenone (ROT) exposed SH-SY5Y cell line and in vivo using ROT administered C57BL/6 mice. Mice were administered with PLT (50 and 100 mg/kg, p.o.) concomitantly with ROT (1 mg/kg, i.p) for 3 weeks. Locomotive activity and anxiety behaviors were assessed using rotarod and open field tests respectively. Further apoptosis (Cytochrome-C, Bax), α-Synuclein (α-SYN), tyrosine hydroxylase (TH), antioxidant proteins (nuclear factor erythroid 2-related factor 2 (NRF2), heme oxygenase-1 (HO-1) and autophagic (mTOR, Atg5,7, p62, Beclin,LC3B-I/II) protein activity were evaluated both in in vitro and in vivo. RESULTS: PLT improved locomotive activity and anxiety-like behavior in mice. Further PLT diminished apoptotic cell death, α-SYN expression and improved the expression of TH, antioxidant, and autophagic regulating protein. CONCLUSION: Taken together, present data deciphers that the PLT effectively improves motor and non-motor symptoms via modulating the mTOR/NRF2/p62 pathway-mediated feedback loop. Hence, PLT could emerge as a prospective disease-modifying drug for PD management.


Assuntos
Neuroblastoma , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Doença de Parkinson , Humanos , Camundongos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Rotenona/toxicidade , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/farmacologia , Floretina/farmacologia , Estudos Prospectivos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Serina-Treonina Quinases TOR/metabolismo , Autofagia
19.
Cell Mol Neurobiol ; 43(5): 2005-2020, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36138280

RESUMO

Chronic diabetic conditions have been associated with certain cerebral complications, that include neurobehavioral dysfunctional patterns and morphological alterations of neurons, especially the hippocampus. Neuroanatomical studies done by the authors have shown decreased total dendritic length, intersections, dendritic length per branch order and nodes in the CA1 hippocampal region of the diabetic brain as compared to its normal control group, indicating reduced dendritic arborization of the hippocampal CA1 neurons. Epigenetic alterations in the brain are well known to affect age-associated disorders, however its association with the evolving diabetes-induced damage in the brain is still not fully understood. DNA hypermethylation within the neurons, tend to silent the gene expression of several regulatory proteins. The findings in the study have shown an increase in global DNA methylation in palmitic acid-induced lipotoxic Neuro-2a cells as well as within the diabetic mice brain. Inhibiting DNA methylation, restored the levels of HSF1 and certain HSPs, suggesting plausible effect of DNMTs in maintaining the proteostasis and synaptic fidelity. Neuroinflammation, as exhibited by the astrocyte activation (GFAP), were further significantly decreased in the 5-azadeoxycytidine group (DNMT inhibitor). This was further evidenced by decrease in proinflammatory cytokines TNF⍺, IL-6, and mediators iNOS and Phospho-NFkB. Our results suggest that changes in DNA methylation advocate epigenetic dysregulation and its involvement in disrupting the synaptic exactitude in the hippocampus of diabetic mice model, providing an insight into the pathophysiology of diabetes-induced neuroepigenetic changes.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Experimental , Animais , Camundongos , Metilação de DNA/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Encéfalo , Disfunção Cognitiva/genética , Citocinas , Hipocampo
20.
Ageing Res Rev ; 84: 101816, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36481490

RESUMO

The protein dyshomeostasis is identified as the hallmark of many age-related neurodegenerative disorders including Parkinson's disease (PD). The diseased brain shows the deposition of Lewy bodies composed of α-synuclein protein aggregates. Functional proteostasis is characterized by the well-coordinated signaling network constituting unfolded protein response (UPR), the ubiquitin-proteasome system (UPS), and the autophagy-lysosome pathway (ALP). These networks ensure proper synthesis, folding, confirmation, and degradation of protein i.e., α-synuclein protein in PD. The proper functioning the of intricately woven proteostasis network is quite resilient to sustain under the influence of stressors. The synuclein protein turnover is hugely influenced by the autosomal dominant, recessive, and X-linked mutational changes of a gene involved in UPR, UPS, and ALP. The methylation, acetylation-related epigenetic modifications of DNA and histone proteins along with microRNA-mediated transcriptional changes also lead to extensive proteostasis dysregulation. The result of defective proteostasis is the deposition of many proteins which start appearing in the biofluids and can be identified as potential biomarkers for early diagnosis of PD. The therapeutic intervention targeted at different strata of proteostasis machinery holds great possibilities for delaying the age-related accumulation of pathological hallmarks.


Assuntos
Doença de Parkinson , Proteostase , Humanos , alfa-Sinucleína/metabolismo , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/terapia , Doença de Parkinson/diagnóstico , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteostase/fisiologia , Ubiquitina/metabolismo , Resposta a Proteínas não Dobradas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA