Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Entomol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748568

RESUMO

Domestication can lead to significant changes in the growth and behavior of organisms. While the threat of predation is a strong selective force in the wild, the relaxation or removal of this threat in captive-rearing environments selects for reduced sensitivity to biotic stressors. Previous work has documented such changes in other taxa, but no work has been done on domestication-related losses of predation risk sensitivity in insects. We exposed both wild and domesticated (>50 generations in captivity) Lymantria dispar dispar (Lepidoptera: Erebidae) larvae to recordings of predators (wasp buzzing), nonpredators (mosquito buzzing), or no sound to compare the effects of predation risk on the two stocks. Wasp buzzing, but not mosquito buzzing, decreased survival of wild caterpillars relative to the control; domesticated caterpillars showed no such response. Domesticated L. dispar larvae appear to have reduced sensitivity to predation risk cues, suggesting that captive-reared insects may not always be analogs to their wild counterparts for risk-related behavioral studies.

2.
Psychopharmacology (Berl) ; 241(3): 601-612, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311691

RESUMO

RATIONALE: The mammalian target of rapamycin (mTOR) kinase is known to mediate consolidation and reconsolidation of aversive memories. Most studies in this area use a forward conditioning paradigm in which the conditioned stimulus (CS) precedes the unconditioned stimulus (US). Little is known, however, about the neurobiological underpinnings of backwards (BW) conditioning paradigms, particularly in female mice. In BW conditioning, the CS does not become directly associated with the US; it instead evokes conditioned fear by reactivating a memory of the conditioning context and indirectly retrieving a memory of the aversive US. OBJECTIVES: We sought to examine BW conditioned fear memory processes in female mice. First, we examined whether freezing to a BW CS is mediated by fear to the conditioning context. Second, we tested whether blocking consolidation of a BW CS attenuated memory of the CS and conditioning context. Finally, we tested whether blocking reconsolidation of a BW CS attenuated memory of the conditioning context. RESULTS: We show that conditioned freezing to a BW CS is mediated by fear to the conditioning context. Furthermore, rapamycin-an mTOR inhibitor, when given immediately following BW conditioning, impairs consolidation of both cued and contextual fear memory. Similarly, rapamycin given following retrieval of a BW CS blocks context recall. Rapamycin is acting on reconsolidation as CS retrieval is necessary to see the effects of rapamycin on context memory recall. CONCLUSIONS: Our study provides novel evidence that indirect retrieval cues are sensitive to rapamycin in female mice. The capacity to indirectly reactivate memories and render them susceptible to disruption is critical in the translation of reconsolidation-based approaches to the clinic.


Assuntos
Afeto , Sirolimo , Feminino , Animais , Camundongos , Sirolimo/farmacologia , Condicionamento Clássico , Condicionamento Operante , Serina-Treonina Quinases TOR , Mamíferos
3.
Sci Rep ; 13(1): 10886, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407623

RESUMO

Traumatic events that affect physiology and behavior in the current generation may also impact future generations. We demonstrate that an ecologically realistic degree of predation risk prior to conception causes lasting changes in the first filial (F1) and second filial (F2) generations. We exposed male and female mice to a live rat (predator stress) or control (non-predator) condition for 5 min. Ten days later, stressed males and females were bred together as were control males and females. Adult F1 offspring from preconception-stressed parents responded to a mild stressor with more anxiety-like behavior and hyperarousal than offspring from control parents. Exposing these F1 offspring to the mild stressor increased neuronal activity (cFOS) in the hippocampus and altered glucocorticoid system function peripherally (plasma corticosterone levels). Even without the mild stressor, F1 offspring from preconception-stressed parents still exhibited more anxiety-like behaviors than controls. Cross-fostering studies confirmed that preconception stress, not maternal social environment, determined offspring behavioral phenotype. The effects of preconception parental stress were also unexpectedly persistent and produced similar behavioral phenotypes in the F2 offspring. Our data illustrate that a surprisingly small amount of preconception predator stress alters the brain, physiology, and behavior of future generations. A better understanding of the 'long shadow' cast by fearful events is critical for understanding the adaptive costs and benefits of transgenerational plasticity. It also suggests the intriguing possibility that similar risk-induced changes are the rule rather than the exception in free-living organisms, and that such multigenerational impacts are as ubiquitous as they are cryptic.


Assuntos
Comportamento Predatório , Efeitos Tardios da Exposição Pré-Natal , Ratos , Camundongos , Animais , Feminino , Masculino , Humanos , Corticosterona , Glucocorticoides , Ansiedade , Hipocampo
4.
Ecology ; 104(4): e4007, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36807135

RESUMO

The high fitness cost of predation selects prey capable of detecting risk cues and responding in ways that reduce their vulnerability. While the impacts of auditory predator cues have been extensively researched in vertebrate prey, much less is known about invertebrate species' responses and their potential to affect the wider food web. We exposed larvae of Spodoptera exigua, a slow-moving and vulnerable herbivore hunted by aerial predators, to recordings of wasp buzzing (risk cue), mosquito buzzing (no-risk cue), or a no-sound control in both laboratory and field settings. In the laboratory, wasp buzzing (but not mosquito buzzing) reduced survival relative to the control; there was, however, no effect on time to or weight at pupation in survivors. In the field, wasp buzzing reduced caterpillar herbivory and increased plant biomass relative to the control treatment. In contrast, mosquito buzzing reduced herbivory less than wasp buzzing and had no effect on plant biomass. The fact that wasp cues evoked strong responses in both experiments, while mosquito buzzing generally did not, indicates that caterpillars were responding to predation risk rather than sound per se. Such auditory cues may have an important but largely unappreciated impacts on terrestrial invertebrate herbivores and their host plants.


Assuntos
Lepidópteros , Vespas , Animais , Herbivoria , Sinais (Psicologia) , Plantas , Larva/fisiologia , Comportamento Predatório , Cadeia Alimentar
5.
J Econ Entomol ; 114(4): 1568-1574, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34171099

RESUMO

Many damaging agricultural pests can, in addition to their direct feeding damage, acquire and transmit plant pathogens. Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) is considered a 'supervector' of disease-causing plant pathogens and viruses. One of the most damaging of these is Tomato yellow leaf curl virus (TYLCV), a circulatively transmitted begomovirus than can extensively damage field and greenhouse crops. Because sustained feeding periods are necessary to acquire and transmit circulatively transmitted viruses, pesticides that, in addition to their direct lethality, suppress feeding in surviving individuals may be particularly effective in decreasing viral transmission. We assessed the impact of sulfoxaflor, a sulfoximine insecticide, on the settling preference, feeding, and viral transmission of TYLCV-carrying B. tabaci on tomato. We found that viruliferous B. tabaci avoided both settling and feeding on sulfoxaflor-treated plants, and that sulfoxaflor virtually eliminated the transmission of TYLCV by B. tabaci. The antifeedant properties of sulfoxaflor have previously been reported in other pest systems; our results document similar effects on viruliferous B. tabaci and demonstrate that this pesticide can reduce TYLCV transmission by surviving individuals.


Assuntos
Begomovirus , Hemípteros , Solanum lycopersicum , Animais , Doenças das Plantas , Piridinas , Compostos de Enxofre
6.
J Econ Entomol ; 114(3): 1072-1080, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33825898

RESUMO

Pesticides primarily affect target organisms via direct toxicity, but may also alter the feeding behaviors of surviving individuals in ways that alter their effect on host plants. The latter impact is especially important when pests can transmit plant pathogens. The Mediterranean (MED) population of the sweetpotato whitefly Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) transmits Tomato yellow leaf curl virus (TYLCV), a pathogen that can be economically devastating in field and greenhouse cropping systems. We first assessed the impact of sublethal (LC15) and label concentrations of flupyradifurone, a butenolide-derived insecticide, on the feeding behavior of TYLCV-infected MED on tomato. We next measured the effect of flupyradifurone on plant TYLCV load, vector transmission efficiency, and MED survival. Both the LC15 and label flupyradifurone concentrations dramatically altered MED feeding and caused the near cessation of both salivation and phloem ingestion (necessary for viral transmission and acquisition, respectively). Both concentrations also significantly reduced plant TYLCV load, and the label rate of flupyradifurone sharply decreased TYLCV transmission while killing >99% of MED. As the first report of pesticide-induced changes in the feeding behavior of viruliferous Bemisia, our findings highlight the potential importance of chemically driven feeding cessation in the control of TYLCV and other Bemisia-transmitted plant pathogens.


Assuntos
Begomovirus , Hemípteros , Solanum lycopersicum , 4-Butirolactona/análogos & derivados , Animais , Comportamento Alimentar , Insetos Vetores , Doenças das Plantas , Piridinas
7.
Tree Physiol ; 41(3): 416-427, 2021 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-33094330

RESUMO

Our understanding of how conifers respond biochemically to multiple simultaneous herbivore attacks is lacking. Eastern hemlock (Tsuga canadensis; 'hemlock') is fed on by hemlock woolly adelgid (Adelges tsugae; 'adelgid') and by later-instar gypsy moth (Lymantria dispar; 'gypsy moth') caterpillars. The adelgid is a stylet-feeding insect that causes a salicylic acid (SA)-linked response in hemlock, and gypsy moth larvae are folivores that presumably cause a jasmonic acid (JA)-linked response. This system presents an opportunity to study how invasive herbivore-herbivore interactions mediated through host biochemical responses. We used a factorial field experiment to challenge chronically adelgid-infested hemlocks with gypsy moth caterpillars. We quantified 17 phytohormones, 26 phenolic and terpene metabolites, and proanthocyanidin, cell wall-bound (CW-bound) phenolic, and lignin contents. Foliage infested with adelgid only accumulated gibberellins and SA; foliage challenged by gypsy moth only accumulated JA phytohormones. Gypsy moth folivory on adelgid-infested foliage reduced the accumulation of JA phytohormones and increased the SA levels. Both herbivores increased CW-bound phenolics and gypsy moth increased lignin content when feeding alone but not when feeding on adelgid-infested foliage. Our study illustrates the importance of understanding the biochemical mechanisms and signaling antagonism underlying tree responses to multiple stresses and of disentangling local and systemic stress signaling in trees.


Assuntos
Hemípteros , Traqueófitas , Animais , Herbivoria , Árvores , Tsuga
8.
Environ Entomol ; 49(5): 1226-1231, 2020 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-33068115

RESUMO

Hemlock woolly adelgid is an invasive piercing-sucking insect in eastern North America, which upon infestation of its main host, eastern hemlock ('hemlock'), improves attraction and performance of folivorous insects on hemlock. This increased performance may be mediated by hemlock woolly adelgid feeding causing antagonism between the the jasmonic acid and other hormone pathways. In a common garden experiments using hemlock woolly adelgid infestation and induction with methyl jasmonate (MeJA) and measures of secondary metabolite contents and defense-associated enzyme activities, we explored the impact of hemlock woolly adelgid feeding on the local and systemic induction of jasmonic acid (JA)-elicited defenses. We found that in local tissue hemlock woolly adelgid or MeJA exposure resulted in unique induced phenotypes, whereas the combined treatment resulted in an induced phenotype that was a mixture of the two individual treatments. We also found that if the plant was infested with hemlock woolly adelgid, the systemic response of the plant was dominated by hemlock woolly adelgid, regardless of whether MeJA was applied. Interestingly, in the absence of hemlock woolly adelgid, hemlock plants had a very weak systemic response to MeJA. We conclude that hemlock woolly adelgid infestation prevents systemic induction of JA-elicited defenses. Taken together, compromised local JA-elicited defenses combined with weak systemic induction could be major contributors to increased folivore performance on hemlock woolly adelgid-infested hemlock.


Assuntos
Hemípteros , Cicutas (Apiáceas) , Pinaceae , Animais , Ciclopentanos , Oxilipinas , Pinales , Tsuga
9.
J Econ Entomol ; 113(4): 1922-1926, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32484504

RESUMO

The whitefly, Bemisia tabaci Gennadius, is a major phloem-feeding pest of agricultural crops that is also an important vector of many plant diseases. The B. tabaci Mediterranean ('MED') biotype is a particularly effective vector of Tomato yellow leaf curl virus (TYLCV), a devastating plant pathogen. Although insecticides play an important role in the control of MED and TYLCV, little is known about how TYLCV infection affects MED susceptibility to insecticides. We conducted research addressing how MED susceptibility to flupyradifurone, the first commercially available systemic control agent derived from the butenolide class of insecticides, was affected by TYLCV infection. We first conducted bioassays determining the LC15 and LC50 for control and viruliferous MED feeding on either water- or insecticide-treated plants. We next measured several demographic parameters of control and viruliferous MED exposed to either insecticide- or water-treated plants. TYLCV infection increased MED tolerance of flupyradifurone: the LC15 and LC50 of viruliferous MED were double that of uninfected MED. Viral infection also altered MED demographic responses to flupyradifurone, but in an inconsistent manner. Although the ability of TYLCV and other persistently transmitted viruses to benefit Bemisia via manipulation of host plant defense is well known, this appears to be the first example of virally mediated changes in vector susceptibility to an insecticide.


Assuntos
Begomovirus , Hemípteros , Solanum lycopersicum , 4-Butirolactona/análogos & derivados , Animais , Doenças das Plantas , Piridinas
10.
Oecologia ; 193(2): 273-283, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32542471

RESUMO

The risk of consumption is a pervasive aspect of ecology and recent work has focused on synthesis of consumer-resource interactions (e.g., enemy-victim ecology). Despite this, theories pertaining to the timing and magnitude of defenses in animals and plants have largely developed independently. However, both animals and plants share the common dilemma of uncertainty of attack, can gather information from the environment to predict future attacks and alter their defensive investment accordingly. Here, we present a novel, unifying framework based on the way an organism's ability to defend itself during an attack can shape their pre-attack investment in defense. This framework provides a useful perspective on the nature of information use and variation in defensive investment across the sequence of attack-related events, both within and among species. It predicts that organisms with greater proportional fitness loss if attacked will gather and respond to risk information earlier in the attack sequence, while those that have lower proportional fitness loss may wait until attack is underway. This framework offers a common platform to compare and discuss consumer effects and provides novel insights into the way risk information can propagate through populations, communities, and ecosystems.


Assuntos
Ecossistema , Plantas , Animais , Herbivoria
12.
J Econ Entomol ; 113(3): 1568-1571, 2020 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-32198517

RESUMO

Plant genotype influences plant suitability to herbivores; domesticated plants selected for properties such as high fruit yield may be particularly vulnerable to herbivory. Cultivated strains of highbush blueberry, Vaccinium corymbosum L. can be high-quality hosts for larvae of the gregariously feeding notodontid Datana drexelii (Hy. Edwards). We conducted an experiment assessing D. drexelii larval survival and pupal weight when fed foliage from five blueberry cultivars: 'Bluecrop', 'Bluetta', 'Blueray', 'Lateblue', and 'Jersey'. We complemented this experimental work with repeated bush-level surveys of a managed blueberry patch for naturally occurring D. drexelii larval clusters. Larval survival and pupal weight were significantly higher on 'Lateblue' foliage than from the 'Bluecrop', 'Bluetta', and 'Jersey' cultivars. The blueberry patch surveys found more D. drexelii larval clusters on 'Bluehaven', 'Collins', and 'Darrow' bushes than on the cultivars 'Earliblue' and 'Jersey'. The low D. drexelii occurrence and performance on the 'Jersey' cultivar suggests that this variety may be appropriate for areas where this pest is common; conversely, their high occurrence on 'Bluehaven' 'Collins', and 'Darrow' suggests that these cultivars may be particularly vulnerable. Cultivar-level variation in herbivore vulnerability highlights how understanding plant-pest interactions can help manage agricultural species.


Assuntos
Mirtilos Azuis (Planta) , Mariposas , Animais , Frutas , Larva , Pupa
13.
BMC Plant Biol ; 19(1): 556, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842757

RESUMO

BACKGROUND: While virus-vector-host interactions have been a major focus of both basic and applied ecological research, little is known about how different levels of plant defense interact with prior herbivory to affect these relationships. We used genetically-modified strains of tomato (Solanum lycopersicum) varying in the jasmonic acid (JA) plant defense pathways to explore how plant defense and prior herbivory affects a plant virus (tomato yellow leaf curl virus, 'TYLCV'), its vector (the whitefly Bemisia tabaci MED), and the host. RESULTS: Virus-free MED preferred low-JA over high-JA plants and had lower fitness on high-JA plants. Viruliferous MED preferred low-JA plants but their survival was unaffected by JA levels. While virus-free MED did not lower plant JA levels, viruliferous MED decreased both JA levels and the expression of JA-related genes. Infestation by viruliferous MED reduced plant JA levels. In preference tests, neither virus-free nor viruliferous MED discriminated among JA-varying plants previously exposed to virus-free MED. However, both virus-free and viruliferous MED preferred low-JA plant genotypes when choosing between plants that had both been previously exposed to viruliferous MED. The enhanced preference for low-JA genotypes appears linked to the volatile compound neophytadiene, which was found only in whitefly-infested plants and at concentrations inversely related to plant JA levels. CONCLUSIONS: Our findings illustrate how plant defense can interact with prior herbivory to affect both a plant virus and its whitefly vector, and confirm the induction of neophytadiene by MED. The apparent attraction of MED to neophytadiene may prove useful in pest detection and management.


Assuntos
Antibiose , Begomovirus/fisiologia , Ciclopentanos/metabolismo , Hemípteros/fisiologia , Herbivoria , Oxilipinas/metabolismo , Doenças das Plantas/virologia , Solanum lycopersicum/fisiologia , Animais , Solanum lycopersicum/imunologia , Solanum lycopersicum/virologia , Imunidade Vegetal , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/fisiologia , Plantas Geneticamente Modificadas/virologia , Transdução de Sinais
14.
Insects ; 9(4)2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30477155

RESUMO

The nonnative hemlock woolly adelgid is steadily killing eastern hemlock trees in many parts of eastern North America. We summarize impacts of the adelgid on these forest foundation species; review previous models and analyses of adelgid spread dynamics; and examine how previous forecasts of adelgid spread and ecosystem dynamics compare with current conditions. The adelgid has reset successional sequences, homogenized biological diversity at landscape scales, altered hydrological dynamics, and changed forest stands from carbon sinks into carbon sources. A new model better predicts spread of the adelgid in the south and west of the range of hemlock, but still under-predicts its spread in the north and east. Whether these underpredictions result from inadequately modeling accelerating climate change or accounting for people inadvertently moving the adelgid into new locales needs further study. Ecosystem models of adelgid-driven hemlock dynamics have consistently forecast that forest carbon stocks will be little affected by the shift from hemlock to early-successional mixed hardwood stands, but these forecasts have assumed that the intermediate stages will remain carbon sinks. New forecasting models of adelgid-driven hemlock decline should account for observed abrupt changes in carbon flux and ongoing and accelerating human-driven land-use and climatic changes.

15.
Ecology ; 99(8): 1783-1791, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29729193

RESUMO

Forests make up a large portion of terrestrial plant biomass, and the long-lived woody plants that dominate them possess an array of traits that deter consumption by forest pests. Although often extremely effective against native consumers, invasive species that avoid or overcome these defenses can wreak havoc on trees and surrounding ecosystems. This is especially true when multiple invasive species co-occur, since interactions between invasive herbivores may yield non-additive effects on the host. While the threat posed by invasive forest pests is well known, long-term field experiments are necessary to explore these consumer-host interactions at appropriate spatial and temporal scales. Moreover, it is important to measure multiple variables to get a "whole-plant" picture of their combined impact. We report the results of a 4-yr field experiment addressing the individual and combined impacts of two invasive herbivores, the hemlock woolly adelgid (Adelges tsugae) and elongate hemlock scale (Fiorinia externa), on native eastern hemlock (Tsuga canadensis) in southern New England. In 2011, we planted 200 hemlock saplings into a temperate forest understory and experimentally manipulated the presence/absence of both herbivore species; in 2015, we harvested the 88 remaining saplings and assessed plant physiology, growth, and resource allocation. Adelgids strongly affected hemlock growth: infested saplings had lower above/belowground biomass ratios, more needle loss, and produced fewer new needles than control saplings. Hemlock scale did not alter plant biomass allocation or growth, and its co-occurrence did not alter the impact of adelgid. While both adelgid and scale impacted the concentrations of primary metabolites, adelgid effects were more pronounced. Adelgid feeding simultaneously increased free amino acids local to feeding sites and a ~30% reduction in starch. The cumulative impact of adelgid-induced needle loss, manipulation of nitrogen pools, and the loss of stored resources likely accelerates host decline through disruption of homeostatic source-sink dynamics occurring at the whole-plant level. Our research stresses the importance of considering long-term impacts to predict how plants will cope with contemporary pressures experienced in disturbed forests.


Assuntos
Hemípteros , Herbivoria , Animais , Ecossistema , Florestas , New England , Árvores , Tsuga
16.
Ecology ; 99(5): 1018-1023, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29608784

RESUMO

A species' distribution and abundance are determined by abiotic conditions and biotic interactions with other species in the community. Most species distribution models correlate the occurrence of a single species with environmental variables only, and leave out biotic interactions. To test the importance of biotic interactions on occurrence and abundance, we compared a multivariate spatiotemporal model of the joint abundance of two invasive insects that share a host plant, hemlock woolly adelgid (HWA; Adelges tsugae) and elongate hemlock scale (EHS; Fiorina externa), to independent models that do not account for dependence among co-occurring species. The joint model revealed that HWA responded more strongly to abiotic conditions than EHS. Additionally, HWA appeared to predispose stands to subsequent increase of EHS, but HWA abundance was not strongly dependent on EHS abundance. This study demonstrates how incorporating spatial and temporal dependence into a species distribution model can reveal the dependence of a species' abundance on other species in the community. Accounting for dependence among co-occurring species with a joint distribution model can also improve estimation of the abiotic niche for species affected by interspecific interactions.


Assuntos
Hemípteros , Tsuga , Animais , Insetos
17.
Oecologia ; 186(4): 973-982, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29362885

RESUMO

Herbivore-induced changes in host quality mediate indirect interactions between herbivores. The nature of these indirect interactions can vary depending on the identity of herbivores involved, species-specific induction of defense-signaling pathways, and sequence of attack. However, our understanding of the role of these signaling pathways in the success of multiple exotic herbivores is less known. Eastern hemlock (Tsuga canadensis) is attacked by two invasive herbivores [elongate hemlock scale (EHS; Fiorinia externa) and hemlock woolly adelgid (HWA; Adelges tsugae)] throughout much of its range, but prior attack by EHS is known to deter HWA. The potential role of phytohormones in this interaction is poorly understood. We measured endogenous levels of phytohormones in eastern hemlock in response to attack by these invasive herbivores. We also used exogenous application of methyl jasmonate (MJ) and acibenzolar-S-methyl (ASM), a salicylic acid (SA) pathway elicitor, to test the hypothesis that defense-signaling phytohormones typically induced by herbivores could deter HWA. Resistance to adelgid attack was assessed using a behavioral assay. Adelgid feeding significantly elevated both abscisic acid (ABA) and SA in local tissues, while EHS feeding had no detectable effect on either phytohormone. HWA progrediens and sistens crawlers preferred to settle on ASM-treated foliage. In contrast, HWA crawlers actively avoided settlement on MJ-treated foliage. We suggest that induction of ABA- and SA-signaling pathways, in concert with defense-signaling interference, may aid HWA invasion success, and that defense-signaling interference, induced by exotic competitors, may mediate resistance of native hosts.


Assuntos
Hemípteros , Herbivoria , Animais , Reguladores de Crescimento de Plantas , Especificidade da Espécie , Tsuga
18.
Funct Plant Biol ; 45(5): 501-508, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32290989

RESUMO

Hemlock woolly adelgid (Adelges tsugae Annand) (HWA) is an invasive insect that feeds upon the foliage of eastern hemlock (Tsuga canadensis (L.) Carrière) trees, leading to a decline in health and often mortality. The exact mechanism leading to the demise of eastern hemlocks remains uncertain because little is known about how HWA infestation directly alters the host's physiology. To evaluate the physiological responses of eastern hemlock during early infestation of HWA, we measured needle loss, xylem hydraulic conductivity, vulnerability to cavitation, tracheid anatomy, leaf-level gas exchange, leaf water potential and foliar cation and nutrient levels on HWA-infested and noninfested even-aged trees in an experimental garden. HWA infestation resulted in higher xylem hydraulic conductivity correlated with an increase in average tracheid lumen area and no difference in vulnerability to cavitation, indicating that needle loss associated with HWA infestation could not be attributed to reduced xylem transport capacity. HWA-infested trees exhibited higher rates of net photosynthesis and significant changes in foliar nutrient partitioning, but showed no differences in branch increment growth rates compared with noninfested trees. This study suggests that HWA-induced decline in the health of eastern hemlock trees is not initially caused by compromised water relations or needle loss.

19.
AoB Plants ; 9(2): plx007, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28439394

RESUMO

Invasive herbivores can dramatically impact the nitrogen (N) economy of native hosts. In deciduous species, most N is stored in stem tissues, while in evergreen conifer species N is stored in needles, making them potentially more vulnerable to herbivory. In eastern forests of the USA, the long-lived, foundational conifer eastern hemlock (Tsuga canadensis) is under the threat of extirpation by the invasive hemlock woolly adelgid (HWA: Adelges tsugae). We assessed the impact of HWA infestation on the patterns of seasonal foliar N availability in hemlock planted in a deciduous forest understory. Over the course of a year, we sampled needles and twigs and measured N, carbon (C), C:N ratio, and total protein concentrations. Tissue sampling events were timed to coincide with key life-history transitions for HWA to determine the association between HWA development and feeding with these foliar nutrients. In uninfested trees, needle and twig N concentrations fluctuated across seasons, indicating the potential importance of N storage and remobilization for the N economy of eastern hemlock. Although N levels in HWA-infested trees also cycled annually, the degree to which N concentrations fluctuated seasonally in tissues was significantly affected by HWA feeding. These fluctuations exceeded N levels observed in control trees and coincided with HWA feeding. HWA feeding generally increased N concentrations but did not affect protein levels, suggesting that changes in N do not occur via adelgid-induced protein breakdown. Herbivore-induced mobilization of N to feeding sites and its rapid depletion may be a significant contributor to eastern hemlock mortality in US forests.

20.
Environ Entomol ; 46(3): 626-632, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334410

RESUMO

Prey have evolved a number of defenses against predation, and predators have developed means of countering these protective measures. Although caterpillars of the monarch butterfly, Danaus plexippus L., are defended by cardenolides sequestered from their host plants, the Chinese mantid Tenodera sinensis Saussure guts the caterpillar before consuming the rest of the body. We hypothesized that this gutting behavior might be driven by the heterogeneous quality of prey tissue with respect to toxicity and/or nutrients. We conducted behavioral trials in which mantids were offered cardenolide-containing and cardenolide-free D. plexippus caterpillars and butterflies. In addition, we fed mantids starved and unstarved D. plexippus caterpillars from each cardenolide treatment and nontoxic Ostrinia nubilalis Hübner caterpillars. These trials were coupled with elemental analysis of the gut and body tissues of both D. plexippus caterpillars and corn borers. Cardenolides did not affect mantid behavior: mantids gutted both cardenolide-containing and cardenolide-free caterpillars. In contrast, mantids consumed both O. nubilalis and starved D. plexippus caterpillars entirely. Danaus plexippus body tissue has a lower C:N ratio than their gut contents, while O. nubilalis have similar ratios; gutting may reflect the mantid's ability to regulate nutrient uptake. Our results suggest that post-capture prey processing by mantids is likely driven by a sophisticated assessment of resource quality.


Assuntos
Borboletas/química , Cardenolídeos/toxicidade , Mantódeos/fisiologia , Valor Nutritivo , Comportamento Predatório , Animais , Larva/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA