Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Opt Soc Am A Opt Image Sci Vis ; 37(7): 1083-1099, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32609669

RESUMO

This paper presents a model-based approach to adaptive optics (AO) control based on a zonal (i.e., pixelized) representation of the incoming atmospheric turbulence. Describing the turbulence on a zonal basis enables the encapsulation of the standard frozen-flow assumption into a control-oriented model. A multilayer zonal model is proposed for single-conjugate AO (SCAO) systems. It includes an edge compensation mechanism involving limited support, which results in a sparser model structure. To further reduce the computational complexity, new resultant zonal models localized in the telescope pupil are proposed, with AR1 or AR2 structures, that match the spatial and temporal cross-correlations of the incoming turbulence. The global performance of the resulting linear quadratic Gaussian (LQG) regulator is evaluated using end-to-end simulations and compared to several existing controllers for two different configurations: a very large telescope SCAO and low earth orbit satellite tracking. The results show the high potential of the new approach and highlight possible trade-offs between the performance and complexity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA