Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes Brain Behav ; 9(5): 478-88, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20180861

RESUMO

The memory for location of objects, which binds information about objects to discrete positions or spatial contexts of occurrence, is a form of episodic memory particularly sensitive to hippocampal damage. Its early decline is symptomatic for elderly dementia. Substances that selectively reduce alpha5-GABA(A) receptor function are currently developed as potential cognition enhancers for Alzheimer's syndrome and other dementia, consistent with genetic studies implicating these receptors that are highly expressed in hippocampus in learning performance. Here we explored the consequences of reduced GABA(A)alpha5-subunit contents, as occurring in alpha5(H105R) knock-in mice, on the memory for location of objects. This required the behavioral characterization of alpha5(H105R) and wild-type animals in various tasks examining learning and memory retrieval strategies for objects, locations, contexts and their combinations. In mutants, decreased amounts of alpha5-subunits and retained long-term potentiation in hippocampus were confirmed. They exhibited hyperactivity with conserved circadian rhythm in familiar actimeters, and normal exploration and emotional reactivity in novel places, allocentric spatial guidance, and motor pattern learning acquisition, inhibition and flexibility in T- and eight-arm mazes. Processing of object, position and context memories and object-guided response learning were spared. Genotype difference in object-in-place memory retrieval and in encoding and response learning strategies for object-location combinations manifested as a bias favoring object-based recognition and guidance strategies over spatial processing of objects in the mutants. These findings identify in alpha5(H105R) mice a behavioral-cognitive phenotype affecting basal locomotion and the memory for location of objects indicative of hippocampal dysfunction resulting from moderately decreased alpha5-subunit contents.


Assuntos
Comportamento Exploratório/fisiologia , Hipocampo/metabolismo , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Receptores de GABA-A/genética , Animais , Comportamento de Escolha/fisiologia , Aprendizagem por Discriminação/fisiologia , Feminino , Técnicas de Introdução de Genes , Potenciação de Longa Duração/genética , Potenciação de Longa Duração/fisiologia , Camundongos , Camundongos Mutantes Neurológicos , Receptores de GABA-A/metabolismo
2.
Neuroscience ; 161(2): 635-54, 2009 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-19332109

RESUMO

Converging evidence from pharmacological and molecular studies has led to the suggestion that inhibition of glycine transporter 1 (GlyT1) constitutes an effective means to boost N-methyl-d-aspartate receptor (NMDAR) activity by increasing the extra-cellular concentration of glycine in the vicinity of glutamatergic synapses. However, the precise extent and limitation of this approach to alter cognitive function, and therefore its potential as a treatment strategy against psychiatric conditions marked by cognitive impairments, remain to be fully examined. Here, we generated mutant mice lacking GlyT1 in the entire forebrain including neurons and glia. This conditional knockout system allows a more precise examination of GlyT1 downregulation in the brain on behavior and cognition. The mutation was highly effective in attenuating the motor-stimulating effect of acute NMDAR blockade by phencyclidine, although no appreciable elevation in NMDAR-mediated excitatory postsynaptic currents (EPSC) was observed in the hippocampus. Enhanced cognitive performance was observed in spatial working memory and object recognition memory while spatial reference memory and associative learning remained unaltered. These findings provide further credence for the potential cognitive enhancing effects of brain GlyT1 inhibition. At the same time, they indicated potential phenotypic differences when compared with other constitutive and conditional GlyT1 knockout lines, and highlighted the possibility of a functional divergence between the neuronal and glia subpopulations of GlyT1 in the regulation of learning and memory processes. The relevance of this distinction to the design of future GlyT1 blockers as therapeutic tools in the treatment of cognitive disorders remains to be further investigated.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Memória , Prosencéfalo/fisiologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Anfetamina/farmacologia , Animais , Regulação para Baixo , Potenciais Pós-Sinápticos Excitadores , Feminino , Glicina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/biossíntese , Hipocampo/fisiologia , Aprendizagem , Masculino , Camundongos , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Mutação , Fenciclidina/farmacologia , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/metabolismo , Desempenho Psicomotor , Receptores de N-Metil-D-Aspartato/biossíntese , Reconhecimento Psicológico , Transmissão Sináptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA