Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806197

RESUMO

Trans-sialidases (TS) are important constitutive macromolecules of the secretome present on the surface of Trypanosoma cruzi (T. cruzi) that play a central role as a virulence factor in Chagas disease. These enzymes have been related to infectivity, escape from immune surveillance and pathogenesis exhibited by this protozoan parasite. In this work, atomic force microscopy (AFM)-based single molecule-force spectroscopy is implemented as a suitable technique for the detection and location of functional TS on the surface of extracellular vesicles (EVs) released by tissue-culture cell-derived trypomastigotes (Ex-TcT). For that purpose, AFM cantilevers with functionalized tips bearing the anti-TS monoclonal antibody mAb 39 as a sense biomolecule are engineered using a covalent chemical ligation based on vinyl sulfonate click chemistry; a reliable, simple and efficient methodology for the molecular recognition of TS using the antibody-antigen interaction. Measurements of the breakdown forces between anti-TS mAb 39 antibodies and EVs performed to elucidate adhesion and forces involved in the recognition events demonstrate that EVs isolated from tissue-culture cell-derived trypomastigotes of T. cruzi are enriched in TS. Additionally, a mapping of the TS binding sites with submicrometer-scale resolution is provided. This work represents the first AFM-based molecular recognition study of Ex-TcT using an antibody-tethered AFM probe.


Assuntos
Vesículas Extracelulares , Parasitos , Trypanosoma cruzi , Animais , Vesículas Extracelulares/metabolismo , Glicoproteínas , Microscopia de Força Atômica , Neuraminidase/metabolismo , Parasitos/metabolismo , Trypanosoma cruzi/metabolismo
2.
Int J Mol Sci ; 22(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068436

RESUMO

Extracellular vesicles (EVs) are small lipid vesicles released by either any prokaryotic or eukaryotic cell, or both, with a biological role in cell-to-cell communication. In this work, we characterize the proteomes and nanomechanical properties of EVs released by tissue-culture cell-derived trypomastigotes (mammalian infective stage; (TCT)) and epimastigotes (insect stage; (E)) of Trypanosoma cruzi, the etiologic agent of Chagas disease. EVs of each stage were isolated by differential centrifugation and analyzed using liquid chromatography with tandem mass spectrometry (LC-MS/MS), dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), electron microscopy and atomic force microscopy (AFM). Measurements of zeta-potential were also included. Results show marked differences in the surface molecular cargos of EVs between both stages, with a noteworthy expansion of all groups of trans-sialidase proteins in trypomastigote's EVs. In contrast, chromosomal locations of trans-sialidases of EVs of epimastigotes were dramatically reduced and restricted to subtelomeric regions, indicating a possible regulatable expression of these proteins between both stages of the parasite. Regarding mechanical properties, EVs of trypomastigotes showed higher adhesion compared to the EVs of epimastigotes. These findings demonstrate the remarkable surface remodeling throughout the life cycle of T. cruzi, which shapes the physicochemical composition of the extracellular vesicles and could have an impact in the ability of these vesicles to participate in cell communication in completely different niches of infection.


Assuntos
Doença de Chagas/metabolismo , Vesículas Extracelulares/metabolismo , Estágios do Ciclo de Vida , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/metabolismo , Animais , Doença de Chagas/parasitologia , Chlorocebus aethiops , Vesículas Extracelulares/parasitologia , Interações Hospedeiro-Parasita , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteoma/análise , Células Vero
4.
Pathogens ; 9(2)2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098034

RESUMO

Acanthamoeba is a genus of free-living amoebae widely distributed in nature, associated with the development of encephalitis and keratitis. Despite the fact that it is common to find genotype T5 in environmental samples, only a few cases have been associated with clinical cases in humans. The wide distribution of Acanthamoeba, the characteristic of being amphizoic and the severity of the disease motivate researchers to focus on the isolation of these organisms, but also in demonstrating direct and indirect factors that could indicate a possible pathogenic potential. Here, we performed the characterization of the pathogenic potential of an Acanthamoeba T5 isolate collected from a water source in a hospital. Osmo- and thermotolerance, the secretion of proteases and the effect of trophozoites over cell monolayers were analyzed by different methodologies. Additionally, we confirm the secretion of extracellular vesicles (EVs) of this isolate incubated at two different temperatures, and the presence of serine and cysteine proteases in these vesicles. Finally, using atomic force microscopy, we determined some nanomechanical properties of the secreted vesicles and found a higher value of adhesion in the EVs obtained at 37 °C, which could have implications in the parasite´s survival and damaging potential in two different biological environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA