Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 57(1): 91-105, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36382424

RESUMO

This study aimed to determine the test-retest reliability of a range of transcranial magnetic stimulation (TMS) outcomes in the biceps femoris during isometric, eccentric and concentric contractions. Corticospinal excitability (active motor threshold 120% [AMT120%] and area under recruitment curve [AURC]), short- and long-interval intracortical inhibition (SICI and LICI) and intracortical facilitation (ICF) were assessed from the biceps femoris in 10 participants (age 26.3 ± 6.0 years; height 180.2 ± 6.6 cm, body mass 77.2 ± 8.0 kg) in three sessions. Single- and paired-pulse stimuli were delivered under low-level muscle activity (5% ± 2% of maximal isometric root mean squared surface electromyography [rmsEMG]) during isometric, concentric and eccentric contractions. Participants were provided visual feedback on their levels of rmsEMG during all contractions. Single-pulse outcomes measured during isometric contractions (AURC, AMT110%, AMT120%, AMT130%, AMT150%, AMT170%) demonstrated fair to excellent reliability (ICC range, .51 to .92; CV%, 21% to 37%), whereas SICI, LICI and ICF demonstrated good to excellent reliability (ICC range, .62 to .80; CV%, 19 to 42%). Single-pulse outcomes measured during concentric contractions demonstrated excellent reliability (ICC range, .75 to .96; CV%, 15% to 34%), whereas SICI, LICI and ICF demonstrated good to excellent reliability (ICC range, .65 to .76; CV%, 16% to 71%). Single-pulse outcomes during eccentric contractions demonstrated fair to excellent reliability (ICC range, .56 to .96; CV%, 16% to 41%), whereas SICI, LICI and ICF demonstrated good to excellent (ICC range, .67 to .86; CV%, 20% to 42%). This study found that both single- and paired-pulse TMS outcomes can be measured from the biceps femoris muscle across all contraction modes with fair to excellent reliability. However, coefficient of variation values were typically greater than the smallest worthwhile change which may make tracking physiological changes in these variables difficult without moderate to large effect sizes.


Assuntos
Músculos Isquiossurais , Córtex Motor , Humanos , Adulto Jovem , Adulto , Reprodutibilidade dos Testes , Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Eletromiografia , Estimulação Magnética Transcraniana , Inibição Neural/fisiologia , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia
2.
Sports Med ; 51(11): 2311-2327, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34309803

RESUMO

BACKGROUND: Lower limb muscle strain injury is highly prevalent in running-based sports and is considered a risk factor for recurrent injury. It is possible that differences in muscle activity and activation in previously strain-injured limbs may contribute to the elevated risk of reinjury. OBJECTIVES: To systematically review available literature investigating whether muscle activity and/or activation is different in previously strain-injured muscles compared to contralateral uninjured muscles or uninjured controls. METHODS: A systematic review of literature in SPORTDiscus, MEDLINE Complete, CINAHL and Web of Science was conducted. Full-text English articles which compared indicators of neuromuscular function between injured and uninjured contralateral limbs or control groups in those with a history of muscle strain injury were included. RESULTS: Twelve studies were included in the review after eligibility criteria were applied. A best evidence synthesis revealed moderate to limited evidence suggesting differences in surface electromyography (sEMG) amplitude, integrated sEMG amplitude, inter-muscle sEMG ratios and voluntary activation in injured limbs, most often during eccentric contractions. Studies utilising sprinting assessments demonstrated conflicting evidence when comparing late swing phase biceps femoris sEMG amplitude between limbs with a history of hamstring strain injury and uninjured contralateral limbs. CONCLUSIONS: Differences in muscle activity and activation were observed between injured and uninjured limbs across a variety of strength assessments. The evidence supporting these differences was most often moderate or limited and was generally observed during eccentric contractions. Mostly conflicting or limited evidence was found to suggest that participants with previous hamstring strain injury demonstrate no differences in muscle activity during running tasks when compared with their uninjured counterparts or contralateral limbs. TRIAL REGISTRY: PROSPERO (ID, CRD42019135681).


Assuntos
Músculos Isquiossurais , Força Muscular , Eletromiografia , Humanos , Extremidade Inferior , Músculo Esquelético
3.
J Sci Med Sport ; 23(11): 1093-1099, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32461050

RESUMO

OBJECTIVES: To investigate the architectural and strength adaptations of the hamstrings following 6-weeks of inertial flywheel resistance training. DESIGN: Randomised, stratified training intervention METHODS: Twenty healthy males undertook 6-weeks of a conventional (n=10) or eccentrically biased (n=10) flywheel leg-curl training intervention as well as a subsequent 4-week detraining period. Biceps femoris long head (BFlh) architecture was assessed weekly, whilst assessments of eccentric and isometric knee flexor strength and rate of force development (RFD) were conducted prior to and following the intervention and detraining periods. RESULTS: The participants who undertook the eccentrically biased flywheel intervention showed a significant 14±5% (p<0.001, d=1.98) increase in BFlh fascicle length after 6-weeks of training. These improvements in fascicle length subsequently declined by 13±4% (p<0.001. d=-2.04) following the 4-week detraining period. The conventional flywheel leg-curl training group saw no changes in BFlh fascicle length after the intervention (-0.5%±0.8%, p=0.939, d=-0.04) or detraining (-1.1%±1%, p=0.984, d=-0.03) periods. Both groups saw no changes in any of the strength or RFD variables after the intervention or the detraining period. CONCLUSIONS: Flywheel leg-curl training performed with an eccentric bias led to significant lengthening of BFlh fascicles without a change in RFD, eccentric or isometric strength. These increases in fascicle length were lost following a 4-week detraining period. Conventional flywheel leg-curl training resulted in no changes in fascicle length, strength and RFD. These findings suggest that additional eccentric bias is required during inertial flywheel resistance training to promote fascicle lengthening in the BFlh, however this may still be insufficient to cause alterations to strength and RFD.


Assuntos
Adaptação Fisiológica , Músculos Isquiossurais/fisiologia , Força Muscular , Treinamento Resistido/métodos , Adulto , Humanos , Joelho , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA