Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 41(8): 111694, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36417861

RESUMO

The establishment of a functional vasculature requires endothelial cells to enter quiescence during the completion of development, otherwise pathological overgrowth occurs. How such a transition is regulated remains unclear. Here, we uncover a role of Zeb1 in defining vascular quiescence entry. During quiescence acquisition, Zeb1 increases along with the progressive decline of endothelial progenitors' activities, with Zeb1 loss resulting in endothelial overgrowth and vascular deformities. RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin sequencing (ATAC-seq) analyses reveal that Zeb1 represses Wif1, thereby activating Wnt/ß-catenin signaling. Knockdown of Wif1 rescues the overgrowth induced by Zeb1 deletion. Importantly, local administration of surrogate Wnt molecules in the retina ameliorates the overgrowth defects of Zeb1 mutants. These findings show a mechanism by which Zeb1 induces quiescence of endothelial progenitors during the establishing of vascular homeostasis, providing molecular insight into the inherited neovascular pathologies associated with human ZEB1 mutations, suggesting pharmacological activation of Wnt/ß-catenin signaling as a potential therapeutical approach.


Assuntos
Células Endoteliais , beta Catenina , Humanos , beta Catenina/metabolismo , Células Endoteliais/metabolismo , Via de Sinalização Wnt/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
2.
PLoS Genet ; 17(7): e1009635, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34237064

RESUMO

The intracellular level of fatty aldehydes is tightly regulated by aldehyde dehydrogenases to minimize the formation of toxic lipid and protein adducts. Importantly, the dysregulation of aldehyde dehydrogenases has been implicated in neurologic disorder and cancer in humans. However, cellular responses to unresolved, elevated fatty aldehyde levels are poorly understood. Here, we report that ALH-4 is a C. elegans aldehyde dehydrogenase that specifically associates with the endoplasmic reticulum, mitochondria and peroxisomes. Based on lipidomic and imaging analysis, we show that the loss of ALH-4 increases fatty aldehyde levels and reduces fat storage. ALH-4 deficiency in the intestine, cell-nonautonomously induces NHR-49/NHR-79-dependent hypodermal peroxisome proliferation. This is accompanied by the upregulation of catalases and fatty acid catabolic enzymes, as indicated by RNA sequencing. Such a response is required to counteract ALH-4 deficiency since alh-4; nhr-49 double mutant animals are sterile. Our work reveals unexpected inter-tissue communication of fatty aldehyde levels and suggests pharmacological modulation of peroxisome proliferation as a therapeutic strategy to tackle pathology related to excess fatty aldehydes.


Assuntos
Aldeído Desidrogenase/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Peroxissomos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Aldeído Desidrogenase/química , Aldeído Desidrogenase/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Regulação da Expressão Gênica , Lipase/genética , Lipase/metabolismo , Gotículas Lipídicas/metabolismo , Lipólise/genética , Mutação , Peroxissomos/genética , Receptores Citoplasmáticos e Nucleares/genética
3.
Proc Natl Acad Sci U S A ; 117(51): 32464-32475, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33293420

RESUMO

Epigenetics regulation plays a critical role in determining cell identity by controlling the accessibility of lineage-specific regulatory regions. In muscle stem cells, epigenetic mechanisms of how chromatin accessibility is modulated during cell fate determination are not fully understood. Here, we identified a long noncoding RNA, LncMyoD, that functions as a chromatin modulator for myogenic lineage determination and progression. The depletion of LncMyoD in muscle stem cells led to the down-regulation of myogenic genes and defects in myogenic differentiation. LncMyoD exclusively binds with MyoD and not with other myogenic regulatory factors and promotes transactivation of target genes. The mechanistic study revealed that loss of LncMyoD prevents the establishment of a permissive chromatin environment at myogenic E-box-containing regions, therefore restricting the binding of MyoD. Furthermore, the depletion of LncMyoD strongly impairs the reprogramming of fibroblasts into the myogenic lineage. Taken together, our study shows that LncMyoD associates with MyoD and promotes myogenic gene expression through modulating MyoD accessibility to chromatin, thereby regulating myogenic lineage determination and progression.


Assuntos
Cromatina/genética , RNA Longo não Codificante/genética , Células Satélites de Músculo Esquelético/fisiologia , Animais , Diferenciação Celular/genética , Linhagem da Célula , Transdiferenciação Celular , Cromatina/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular/fisiologia , Proteína MyoD/genética , Mioblastos/citologia , Mioblastos/fisiologia , Células Satélites de Músculo Esquelético/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA