Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37961101

RESUMO

Addressing the significant level of variability exhibited by pancreatic cancer necessitates the adoption of a systems biology approach that integrates molecular data, biological properties of the tumors, and clinical features of the patients. In this study, a comprehensive multi-omics methodology was employed to examine a distinctive collection patient dataset containing rapid autopsy tumor and normal tissue samples as well as longitudinal imaging with a focus on pancreatic cancer. By performing a whole exome sequencing analysis on tumor and normal tissues to identify somatic gene variants and a radiomics feature analysis to tumor CT images, the genome-wide association approach established a connection between pancreatic cancer driver genes and relevant radiomics features, enabling a thorough and quantitative assessment of the heterogeneity of pancreatic tumors. The significant association between sets of genes and radiomics features revealed the involvement of genes in shaping tumor morphological heterogeneity. Some results of the association established a connection between the molecular level mechanism and their outcomes at the level of tumor structural heterogeneity. Because tumor structure and tumor structural heterogeneity are related to the patients' overall survival, patients who had pancreatic cancer driver gene mutations with an association to a certain radiomics feature have been observed to experience worse survival rates than cases without these somatic mutations. Furthermore, the outcome of the association analysis has revealed potential gene mutations and radiomics feature candidates that warrant further investigation in future research endeavors.

2.
Cancers (Basel) ; 14(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35406426

RESUMO

As the most lethal major cancer, pancreatic cancer is a global healthcare challenge. Personalized medicine utilizing cutting-edge multi-omics data holds potential for major breakthroughs in tackling this critical problem. Radiomics and deep learning, two trendy quantitative imaging methods that take advantage of data science and modern medical imaging, have shown increasing promise in advancing the precision management of pancreatic cancer via diagnosing of precursor diseases, early detection, accurate diagnosis, and treatment personalization and optimization. Radiomics employs manually-crafted features, while deep learning applies computer-generated automatic features. These two methods aim to mine hidden information in medical images that is missed by conventional radiology and gain insights by systematically comparing the quantitative image information across different patients in order to characterize unique imaging phenotypes. Both methods have been studied and applied in various pancreatic cancer clinical applications. In this review, we begin with an introduction to the clinical problems and the technology. After providing technical overviews of the two methods, this review focuses on the current progress of clinical applications in precancerous lesion diagnosis, pancreatic cancer detection and diagnosis, prognosis prediction, treatment stratification, and radiogenomics. The limitations of current studies and methods are discussed, along with future directions. With better standardization and optimization of the workflow from image acquisition to analysis and with larger and especially prospective high-quality datasets, radiomics and deep learning methods could show real hope in the battle against pancreatic cancer through big data-based high-precision personalization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA