Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Res ; 9(2): 227-238, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023966

RESUMO

Checkpoint blockade immunotherapy relies on the empowerment of the immune system to fight cancer. Why some patients fail to achieve durable clinical responses is not well understood, but unique individual factors such as diet, obesity, and related metabolic syndrome could play a role. The link between obesity and patient outcomes remains controversial and has been mired by conflicting reports and limited mechanistic insight. We addressed this in a C57BL/6 mouse model of diet-induced obesity using a Western diet high in both fats and sugars. Obese mice bearing B16 melanoma or MC38 carcinoma tumors had impaired immune responses to immunotherapy and a reduced capacity to control tumor progression. Unexpectedly, these compromised therapeutic outcomes were independent of body mass and, instead, were directly attributed to dietary fructose. Melanoma tumors in mice on the high-fructose diet were resistant to immunotherapy and showed increased expression of the cytoprotective enzyme heme oxygenase-1 (HO-1). This increase in HO-1 protein was recapitulated in human A375 melanoma cells exposed to fructose in culture. Induced expression of HO-1 shielded tumor cells from immune-mediated killing and was critical for resistance to checkpoint blockade immunotherapy, which could be overcome in vivo using a small-molecule inhibitor of HO-1. This study reveals dietary fructose as a driver of tumor immune evasion, identifying HO-1 expression as a mechanism of resistance and a promising molecular target for combination cancer immunotherapy.See article by Khojandi et al., p. 214.


Assuntos
Citoproteção , Resistencia a Medicamentos Antineoplásicos , Frutose/metabolismo , Neoplasias/metabolismo , Evasão Tumoral , Animais , Antineoplásicos Imunológicos/uso terapêutico , Carcinoma , Linhagem Celular Tumoral , Feminino , Heme Oxigenase-1/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/tratamento farmacológico
2.
Plant Biotechnol J ; 13(5): 675-88, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25418911

RESUMO

Poly-3-hydroxybutyrate (PHB) production in plastids of Camelina sativa seeds was investigated by comparing levels of polymer produced upon transformation of plants with five different binary vectors containing combinations of five seed-specific promoters for expression of transgenes. Genes encoding PHB biosynthetic enzymes were modified at the N-terminus to encode a plastid targeting signal. PHB levels of up to 15% of the mature seed weight were measured in single sacrificed T1 seeds with a genetic construct containing the oleosin and glycinin promoters. A more detailed analysis of the PHB production potential of two of the best performing binary vectors in a Camelina line bred for larger seed size yielded lines containing up to 15% polymer in mature T2 seeds. Transmission electron microscopy showed the presence of distinct granules of PHB in the seeds. PHB production had varying effects on germination, emergence and survival of seedlings. Once true leaves formed, plants grew normally and were able to set seeds. PHB synthesis lowered the total oil but not the protein content of engineered seeds. A change in the oil fatty acid profile was also observed. High molecular weight polymer was produced with weight-averaged molecular weights varying between 600 000 and 1 500 000, depending on the line. Select lines were advanced to later generations yielding a line with 13.7% PHB in T4 seeds. The levels of polymer produced in this study are the highest reported to date in a seed and are an important step forward for commercializing an oilseed-based platform for PHB production.


Assuntos
Brassicaceae/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Plântula/metabolismo , Sementes/metabolismo , Brassicaceae/química , Brassicaceae/genética , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Germinação , Hidroxibutiratos/química , Especificidade de Órgãos , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Poliésteres/química , Regiões Promotoras Genéticas/genética , Plântula/química , Plântula/genética , Sementes/química , Sementes/genética , Transgenes
3.
CBE Life Sci Educ ; 13(4): 711-23, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25452493

RESUMO

In their 2012 report, the President's Council of Advisors on Science and Technology advocated "replacing standard science laboratory courses with discovery-based research courses"-a challenging proposition that presents practical and pedagogical difficulties. In this paper, we describe our collective experiences working with the Genomics Education Partnership, a nationwide faculty consortium that aims to provide undergraduates with a research experience in genomics through a scheduled course (a classroom-based undergraduate research experience, or CURE). We examine the common barriers encountered in implementing a CURE, program elements of most value to faculty, ways in which a shared core support system can help, and the incentives for and rewards of establishing a CURE on our diverse campuses. While some of the barriers and rewards are specific to a research project utilizing a genomics approach, other lessons learned should be broadly applicable. We find that a central system that supports a shared investigation can mitigate some shortfalls in campus infrastructure (such as time for new curriculum development, availability of IT services) and provides collegial support for change. Our findings should be useful for designing similar supportive programs to facilitate change in the way we teach science for undergraduates.


Assuntos
Genômica/educação , Currículo , Modelos Educacionais , Desenvolvimento de Programas , Estados Unidos , Universidades
4.
Plant Physiol Biochem ; 75: 9-13, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24361505

RESUMO

In plants, glutathione serves as a versatile redox buffer and cellular protective compound against a range of biotic and abiotic stresses. Glutathione production involves glutamate-cysteine ligase (GCL), the redox-regulated limiting enzyme of the pathway, and glutathione synthetase (GS). Because the sub-cellular and sub-organellar localization of these enzymes will have an impact on metabolism, here we examine the localization of GCL and GS in the leaves of Arabidopsis thaliana. Immuno-electron microscopy of leaf cells indicates localization of GCL primarily to the chloroplast with GS found in both the chloroplast and cytosol. Detailed examination of the localization of both enzymes within chloroplasts was performed using fractionation followed by immunoblot analysis and indicates that GCL and GS are found in the stroma. The localization of these enzymes to the stroma of chloroplasts has implications for the redox-regulation of GCL and plant glutathione biosynthesis.


Assuntos
Arabidopsis/enzimologia , Cloroplastos/enzimologia , Glutamato-Cisteína Ligase/metabolismo , Glutationa Sintase/metabolismo , Glutationa/biossíntese , Estresse Oxidativo , Folhas de Planta/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Oxirredução , Folhas de Planta/metabolismo
5.
Front Plant Sci ; 2: 45, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22645536

RESUMO

In plants, exposure to temperature extremes, heavy metal-contaminated soils, drought, air pollutants, and pathogens results in the generation of reactive oxygen species that alter the intracellular redox environment, which in turn influences signaling pathways and cell fate. As part of their response to these stresses, plants produce glutathione. Glutathione acts as an anti-oxidant by quenching reactive oxygen species, and is involved in the ascorbate-glutathione cycle that eliminates damaging peroxides. Plants also use glutathione for the detoxification of xenobiotics, herbicides, air pollutants (sulfur dioxide and ozone), and toxic heavy metals. Two enzymes catalyze glutathione synthesis: glutamate-cysteine ligase, and glutathione synthetase. Glutathione is a ubiquitous protective compound in plants, but the structural and functional details of the proteins that synthesize it, as well as the potential biochemical mechanisms of their regulation, have only begun to be explored. As discussed here, the core reactions of glutathione synthesis are conserved across various organisms, but plants have diversified both the regulatory mechanisms that control its synthesis and the range of products derived from this pathway. Understanding the molecular basis of glutathione biosynthesis and its regulation will expand our knowledge of this component in the plant stress response network.

6.
Mol Plant ; 3(2): 269-79, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20080815

RESUMO

Sulfur is essential for plant growth and development, and the molecular systems for maintaining sulfur and thiol metabolism are tightly controlled. From a biochemical perspective, the regulation of plant thiol metabolism highlights nature's ability to engineer pathways that respond to multiple inputs and cellular demands under a range of conditions. In this review, we focus on the regulatory mechanisms that form the molecular basis of biochemical sulfur sensing in plants by translating the intracellular concentration of sulfur-containing compounds into control of key metabolic steps. These mechanisms range from the simple (substrate availability, thermodynamic properties of reactions, feedback inhibition, and organelle localization) to the elaborate (formation of multienzyme complexes and thiol-based redox switches). Ultimately, the dynamic interplay of these regulatory systems is critical for sensing and maintaining sulfur assimilation and thiol metabolism in plants.


Assuntos
Proteínas de Plantas/metabolismo , Plantas/metabolismo , Compostos de Sulfidrila/metabolismo , Enxofre/metabolismo , Modelos Biológicos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/genética
7.
Plant J ; 60(4): 679-90, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19674406

RESUMO

We report a detailed functional characterization of an Arabidopsis isopropylmalate dehydrogenase (AtIPMDH1) that is involved in both glucosinolate biosynthesis and leucine biosynthesis. AtIPMDH1 shares high homology with enzymes from bacteria and yeast that are known to function in leucine biosynthesis. In plants, AtIPMDH1 is co-expressed with nearly all the genes known to be involved in aliphatic glucosinolate biosynthesis. Mutation of AtIPMDH1 leads to a significant reduction in the levels of free leucine and of glucosinolates with side chains of four or more carbons. Complementation of the mutant phenotype by ectopic expression of AtIPMDH1, together with the enzyme's substrate specificity, implicates AtIPMDH1 in both glucosinolate and leucine biosynthesis. This functional assignment is substantiated by subcellular localization of the protein in the chloroplast stroma, and the gene expression patterns in various tissues. Interestingly, AtIPMDH1 activity is regulated by a thiol-based redox modification. This work characterized an enzyme in plants that catalyzes the oxidative decarboxylation step in both leucine biosynthesis (primary metabolism) and methionine chain elongation of glucosinolates (specialized metabolism). It provides evidence for the hypothesis that the two pathways share a common origin, and suggests a role for redox regulation of glucosinolate and leucine synthesis in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Glucosinolatos/biossíntese , Leucina/biossíntese , Malato Desidrogenase/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Cloroplastos/enzimologia , Cloroplastos/genética , Biologia Computacional , DNA Bacteriano/genética , DNA de Plantas/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Malato Desidrogenase/genética , Mutagênese Insercional , Mutação , Oxirredução , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Especificidade por Substrato
9.
J Cell Biol ; 172(7): 991-8, 2006 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-16567499

RESUMO

The RabA4b GTPase labels a novel, trans-Golgi network compartment displaying a developmentally regulated polar distribution in growing Arabidopsis thaliana root hair cells. GTP bound RabA4b selectively recruits the plant phosphatidylinositol 4-OH kinase, PI-4Kbeta1, but not members of other PI-4K families. PI-4Kbeta1 colocalizes with RabA4b on tip-localized membranes in growing root hairs, and mutant plants in which both the PI-4Kbeta1 and -4Kbeta2 genes are disrupted display aberrant root hair morphologies. PI-4Kbeta1 interacts with RabA4b through a novel homology domain, specific to eukaryotic type IIIbeta PI-4Ks, and PI-4Kbeta1 also interacts with a Ca2+ sensor, AtCBL1, through its NH2 terminus. We propose that RabA4b recruitment of PI-4Kbeta1 results in Ca2+-dependent generation of PI-4P on this compartment, providing a link between Ca2+ and PI-4,5P2-dependent signals during the polarized secretion of cell wall components in tip-growing root hair cells.


Assuntos
1-Fosfatidilinositol 4-Quinase/metabolismo , Arabidopsis/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , Proteínas rab4 de Ligação ao GTP/metabolismo , 1-Fosfatidilinositol 4-Quinase/genética , 1-Fosfatidilinositol 4-Quinase/fisiologia , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Sítios de Ligação , Transporte Biológico/efeitos dos fármacos , Calcimicina/farmacologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Crescimento Celular/efeitos dos fármacos , Polaridade Celular/fisiologia , Ionóforos/farmacologia , Microscopia Eletrônica , Mutação , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Ligação Proteica , Técnicas do Sistema de Duplo-Híbrido , Proteínas rab4 de Ligação ao GTP/genética , Rede trans-Golgi/genética , Rede trans-Golgi/metabolismo , Rede trans-Golgi/ultraestrutura
10.
Plant Physiol ; 136(4): 3945-55, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15557092

RESUMO

A novel kinesin, GhKCH1, has been identified from cotton (Gossypium hirsutum) fibers. GhKCH1 has a centrally located kinesin catalytic core, a signature neck peptide of minus end-directed kinesins, and a unique calponin homology (CH) domain at its N terminus. GhKCH1 and other CH domain-containing kinesins (KCHs) belong to a distinct branch of the minus end-directed kinesin subfamily. To date the KCH kinesins have been found only in higher plants. Because the CH domain is often found in actin-binding proteins, we proposed that GhKCH1 might play a role in mediating dynamic interaction between microtubules and actin microfilaments in cotton fibers. In an in vitro actin-binding assay, GhKCH1's N-terminal region including the CH domain interacted directly with actin microfilaments. In cotton fibers, GhKCH1 decorated cortical microtubules in a punctate manner. Occasionally GhKCH1 was found to be associated with transverse-cortical actin microfilaments, but never with axial actin cables in cotton fibers. Localization of GhKCH1 on cortical microtubules was independent of the integrity of actin microfilaments. Thus, GhKCH1 may play a role in organizing the actin network in coordination with the cortical microtubule array. These data also suggest that flowering plants may employ unique KCHs to coordinate actin microfilaments and microtubules during cell growth.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Gossypium/ultraestrutura , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Fibra de Algodão , Gossypium/genética , Gossypium/metabolismo , Cinesinas/biossíntese , Cinesinas/genética , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Ligação Proteica , Alinhamento de Sequência
11.
Plant Cell ; 16(6): 1589-603, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15155878

RESUMO

Spatial and temporal control of cell wall deposition plays a unique and critical role during growth and development in plants. To characterize membrane trafficking pathways involved in these processes, we have examined the function of a plant Rab GTPase, RabA4b, during polarized expansion in developing root hair cells. Whereas a small fraction of RabA4b cofractionated with Golgi membrane marker proteins, the majority of this protein labeled a unique membrane compartment that did not cofractionate with the previously characterized trans-Golgi network syntaxin proteins SYP41 and SYP51. An enhanced yellow fluorescent protein (EYFP)-RabA4b fusion protein specifically localizes to the tips of growing root hair cells in Arabidopsis thaliana. Tip-localized EYFP-RabA4b disappears in mature root hair cells that have stopped expanding, and polar localization of the EYFP-RabA4b is disrupted by latrunculin B treatment. Loss of tip localization of EYFP-RabA4b was correlated with inhibition of expansion; upon washout of the inhibitor, root hair expansion recovered only after tip localization of the EYFP-RabA4b compartments was reestablished. Furthermore, in mutants with defective root hair morphology, EYFP-RabA4b was improperly localized or was absent from the tips of root hair cells. We propose that RabA4b regulates membrane trafficking through a compartment involved in the polarized secretion of cell wall components in plant cells.


Assuntos
Arabidopsis/citologia , Arabidopsis/enzimologia , Polaridade Celular , Raízes de Plantas/citologia , Raízes de Plantas/enzimologia , Proteínas rab de Ligação ao GTP/metabolismo , Actinas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Citoesqueleto/metabolismo , Perfilação da Expressão Gênica , Membranas Intracelulares/metabolismo , Microtúbulos/metabolismo , Mutação/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Transporte Proteico
12.
Plant Physiol ; 132(1): 154-60, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12746521

RESUMO

Microtubules in interphase plant cells form a cortical array, which is critical for plant cell morphogenesis. Genetic studies imply that the minus end-directed microtubule motor kinesin-like calmodulin-binding protein (KCBP) plays a role in trichome morphogenesis in Arabidopsis. However, it was not clear whether this motor interacted with interphase microtubules. In cotton (Gossypium hirsutum) fibers, cortical microtubules undergo dramatic reorganization during fiber development. In this study, cDNA clones of the cotton KCBP homolog GhKCBP were isolated from a cotton fiber-specific cDNA library. During cotton fiber development from 10 to 21 DPA, the GhKCBP protein level gradually decreases. By immunofluorescence, GhKCBP was detected as puncta along cortical microtubules in fiber cells of different developmental stages. Thus our results provide evidence that GhKCBP plays a role in interphase cell growth likely by interacting with cortical microtubules. In contrast to fibers, in dividing cells of cotton, GhKCBP localized to the nucleus, the microtubule preprophase band, mitotic spindle, and the phragmoplast. Therefore KCBP likely exerts multiple roles in cell division and cell growth in flowering plants.


Assuntos
Fibra de Algodão , Gossypium/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Proteínas de Ligação a Calmodulina/metabolismo , Divisão Celular/genética , DNA Complementar/química , DNA Complementar/genética , Gossypium/genética , Cinesinas/metabolismo , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA