Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Cereb Blood Flow Metab ; : 271678X241270445, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113414

RESUMO

Although ischemia increases the abundance of plasminogen activator inhibitor-1 (PAI-1), its source and role in the ischemic brain remain unclear. We detected PAI-1-immunoreactive cells with morphological features of reactive astrocytes in the peri-ischemic cortex of mice after an experimentally-induced ischemic lesion, and of a chimpanzee that suffered a naturally-occurring stroke. We found that although the abundance of PAI-1 increases 24 hours after the onset of the ischemic injury in a non-reperfusion murine model of ischemic stroke, at that time-point there is no difference in astrocytic reactivity and the volume of the ischemic lesion between wild-type (Wt) animals and in mice either genetically deficient (PAI-1-/-) or overexpressing PAI-1 (PAI-1Tg). In contrast, 72 hours later astrocytic reactivity and the volume of the ischemic lesion were decreased in PAI-1-/- mice and increased in PAI-1Tg animals. Our immunoblottings and fractal analysis studies show that the abundance of astrocytic PAI-1 rises during the recovery phase from a hypoxic injury, which in turn increases the abundance of glial fibrillary acidic protein (GFAP) and triggers morphological features of reactive astrocytes. These studies indicate that cerebral ischemia-induced release of astrocytic PAI-1 triggers astrocytic reactivity associated with enlargement of the necrotic core.

2.
Nature ; 620(7972): 145-153, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37468639

RESUMO

Human-specific genomic changes contribute to the unique functionalities of the human brain1-5. The cellular heterogeneity of the human brain6,7 and the complex regulation of gene expression highlight the need to characterize human-specific molecular features at cellular resolution. Here we analysed single-nucleus RNA-sequencing and single-nucleus assay for transposase-accessible chromatin with sequencing datasets for human, chimpanzee and rhesus macaque brain tissue from posterior cingulate cortex. We show a human-specific increase of oligodendrocyte progenitor cells and a decrease of mature oligodendrocytes across cortical tissues. Human-specific regulatory changes were accelerated in oligodendrocyte progenitor cells, and we highlight key biological pathways that may be associated with the proportional changes. We also identify human-specific regulatory changes in neuronal subtypes, which reveal human-specific upregulation of FOXP2 in only two of the neuronal subtypes. We additionally identify hundreds of new human accelerated genomic regions associated with human-specific chromatin accessibility changes. Our data also reveal that FOS::JUN and FOX motifs are enriched in the human-specifically accessible chromatin regions of excitatory neuronal subtypes. Together, our results reveal several new mechanisms underlying the evolutionary innovation of human brain at cell-type resolution.


Assuntos
Evolução Molecular , Giro do Cíngulo , Animais , Humanos , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Conjuntos de Dados como Assunto , Genoma Humano/genética , Genômica , Giro do Cíngulo/citologia , Giro do Cíngulo/metabolismo , Macaca mulatta/genética , Neurônios/classificação , Neurônios/citologia , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Pan troglodytes/genética , Análise da Expressão Gênica de Célula Única , Células-Tronco/citologia , Transposases/metabolismo , Montagem e Desmontagem da Cromatina
3.
Proc Natl Acad Sci U S A ; 120(22): e2218565120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216540

RESUMO

A long-standing topic of interest in human neurosciences is the understanding of the neurobiology underlying human cognition. Less commonly considered is to what extent such systems may be shared with other species. We examined individual variation in brain connectivity in the context of cognitive abilities in chimpanzees (n = 45) and humans in search of a conserved link between cognition and brain connectivity across the two species. Cognitive scores were assessed on a variety of behavioral tasks using chimpanzee- and human-specific cognitive test batteries, measuring aspects of cognition related to relational reasoning, processing speed, and problem solving in both species. We show that chimpanzees scoring higher on such cognitive skills display relatively strong connectivity among brain networks also associated with comparable cognitive abilities in the human group. We also identified divergence in brain networks that serve specialized functions across humans and chimpanzees, such as stronger language connectivity in humans and relatively more prominent connectivity between regions related to spatial working memory in chimpanzees. Our findings suggest that core neural systems of cognition may have evolved before the divergence of chimpanzees and humans, along with potential differential investments in other brain networks relating to specific functional specializations between the two species.


Assuntos
Conectoma , Pan troglodytes , Animais , Humanos , Neurobiologia , Encéfalo , Cognição , Imageamento por Ressonância Magnética
4.
Cereb Cortex ; 32(13): 2831-2842, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34849623

RESUMO

Brains come in many shapes and sizes. Nature has endowed big-brained primate species like humans with a proportionally large cerebral cortex. Comparative studies have suggested, however, that the total volume allocated to white matter connectivity-the brain's infrastructure for long-range interregional communication-does not keep pace with the cortex. We investigated the consequences of this allometric scaling on brain connectivity and network organization. We collated structural and diffusion magnetic resonance imaging data across 14 primate species, describing a comprehensive 350-fold range in brain size across species. We show volumetric scaling relationships that indeed point toward a restriction of macroscale connectivity in bigger brains. We report cortical surface area to outpace white matter volume, with larger brains showing lower levels of overall connectedness particularly through sparser long-range connectivity. We show that these constraints on white matter connectivity are associated with longer communication paths, higher local network clustering, and higher levels of asymmetry in connectivity patterns between homologous areas across the left and right hemispheres. Our findings reveal conserved scaling relationships of major brain components and show consequences for macroscale brain circuitry, providing insights into the connectome architecture that could be expected in larger brains such as the human brain.


Assuntos
Conectoma , Substância Branca , Animais , Encéfalo/diagnóstico por imagem , Córtex Cerebral/patologia , Conectoma/métodos , Humanos , Imageamento por Ressonância Magnética , Primatas , Substância Branca/diagnóstico por imagem
5.
Neuropsychopharmacology ; 47(1): 3-19, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34363014

RESUMO

Subdivisions of the prefrontal cortex (PFC) evolved at different times. Agranular parts of the PFC emerged in early mammals, and rodents, primates, and other modern mammals share them by inheritance. These are limbic areas and include the agranular orbital cortex and agranular medial frontal cortex (areas 24, 32, and 25). Rodent research provides valuable insights into the structure, functions, and development of these shared areas, but it contributes less to parts of the PFC that are specific to primates, namely, the granular, isocortical PFC that dominates the frontal lobe in humans. The first granular PFC areas evolved either in early primates or in the last common ancestor of primates and tree shrews. Additional granular PFC areas emerged in the primate stem lineage, as represented by modern strepsirrhines. Other granular PFC areas evolved in simians, the group that includes apes, humans, and monkeys. In general, PFC accreted new areas along a roughly posterior to anterior trajectory during primate evolution. A major expansion of the granular PFC occurred in humans in concert with other association areas, with modifications of corticocortical connectivity and gene expression, although current evidence does not support the addition of a large number of new, human-specific PFC areas.


Assuntos
Lobo Frontal , Córtex Pré-Frontal , Animais , Córtex Cerebral
6.
Brain Struct Funct ; 227(5): 1907-1919, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34482474

RESUMO

Despite our close genetic relationship with chimpanzees, there are notable differences between chimpanzee and human social behavior. Oxytocin and vasopressin are neuropeptides involved in regulating social behavior across vertebrate taxa, including pair bonding, social communication, and aggression, yet little is known about the neuroanatomy of these systems in primates, particularly in great apes. Here, we used receptor autoradiography to localize oxytocin and vasopressin V1a receptors, OXTR and AVPR1a respectively, in seven chimpanzee brains. OXTR binding was detected in the lateral septum, hypothalamus, medial amygdala, and substantia nigra. AVPR1a binding was observed in the cortex, lateral septum, hypothalamus, mammillary body, entire amygdala, hilus of the dentate gyrus, and substantia nigra. Chimpanzee OXTR/AVPR1a receptor distribution is compared to previous studies in several other primate species. One notable difference is the lack of OXTR in reward regions such as the ventral pallidum and nucleus accumbens in chimpanzees, whereas OXTR is found in these regions in humans. Our results suggest that in chimpanzees, like in most other anthropoid primates studied to date, OXTR has a more restricted distribution than AVPR1a, while in humans the reverse pattern has been reported. Altogether, our study provides a neuroanatomical basis for understanding the function of the oxytocin and vasopressin systems in chimpanzees.


Assuntos
Ocitocina , Pan troglodytes , Animais , Encéfalo/metabolismo , Humanos , Ocitocina/metabolismo , Pan troglodytes/metabolismo , Receptores de Ocitocina/metabolismo , Receptores de Vasopressinas/metabolismo , Comportamento Social
7.
J Neurosci ; 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127519

RESUMO

The Russian fox-farm experiment is an unusually long-running and well-controlled study designed to replicate wolf-to-dog domestication. As such, it offers an unprecedented window onto the neural mechanisms governing the evolution of behavior. Here we report evolved changes to gray matter morphology resulting from selection for tameness vs. aggressive responses toward humans in a sample of 30 male fox brains. Contrasting with standing ideas on the effects of domestication on brain size, tame foxes did not show reduced brain volume. Rather, gray matter volume in both the tame and aggressive strains was increased relative to conventional farm foxes bred without deliberate selection on behavior. Furthermore, tame- and aggressive-enlarged regions overlapped substantially, including portions of motor, somatosensory, and prefrontal cortex, amygdala, hippocampus, and cerebellum. We also observed differential morphological covariation across distributed gray matter networks. In one prefrontal-cerebellum network, this covariation differentiated the three populations along the tame-aggressive behavioral axis. Surprisingly, a prefrontal-hypothalamic network differentiated the tame and aggressive foxes together from the conventional strain. These findings indicate that selection for opposite behaviors can influence brain morphology in a similar way.SIGNIFICANCE STATEMENTDomestication represents one of the largest and most rapid evolutionary shifts of life on earth. However, its neural correlates are largely unknown. Here we report the neuroanatomical consequences of selective breeding for tameness or aggression in the seminal Russian fox-farm experiment. Compared to a population of conventional farm-bred control foxes, tame foxes show neuroanatomical changes in the prefrontal cortex and hypothalamus, paralleling wolf-to-dog shifts. Surprisingly, though, aggressive foxes also show similar changes. Moreover, both strains show increased gray matter volume relative to controls. These results indicate that similar brain adaptations can result from selection for opposite behavior, that existing ideas of brain changes in domestication may need revision, and that significant neuroanatomical change can evolve very quickly - within the span of less than a hundred generations.

8.
Am J Primatol ; 83(11): e23254, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33960505

RESUMO

Tau pathology in Alzheimer's disease (AD) preferentially afflicts the limbic and recently enlarged association cortices, causing a progression of mnemonic and cognitive deficits. Although genetic mouse models have helped reveal mechanisms underlying the rare, autosomal-dominant forms of AD, the etiology of the more common, sporadic form of AD remains unknown, and is challenging to study in mice due to their limited association cortex and lifespan. It is also difficult to study in human brains, as early-stage tau phosphorylation can degrade postmortem. In contrast, rhesus monkeys have extensive association cortices, are long-lived, and can undergo perfusion fixation to capture early-stage tau phosphorylation in situ. Most importantly, rhesus monkeys naturally develop amyloid plaques, neurofibrillary tangles comprised of hyperphosphorylated tau, synaptic loss, and cognitive deficits with advancing age, and thus can be used to identify the early molecular events that initiate and propel neuropathology in the aging association cortices. Studies to date suggest that the particular molecular signaling events needed for higher cognition-for example, high levels of calcium to maintain persistent neuronal firing- lead to tau phosphorylation and inflammation when dysregulated with advancing age. The expression of NMDAR-NR2B (GluN2B)-the subunit that fluxes high levels of calcium-increases over the cortical hierarchy and with the expansion of association cortex in primate evolution, consistent with patterns of tau pathology. In the rhesus monkey dorsolateral prefrontal cortex, spines contain NMDAR-NR2B and the molecular machinery to magnify internal calcium release near the synapse, as well as phosphodiesterases, mGluR3, and calbindin to regulate calcium signaling. Loss of regulation with inflammation and/or aging appears to be a key factor in initiating tau pathology. The vast expansion in the numbers of these synapses over primate evolution is consistent with the degree of tau pathology seen across species: marmoset < rhesus monkey < chimpanzee < human, culminating in the vast neurodegeneration seen in humans with AD.


Assuntos
Doença de Alzheimer , Doenças dos Roedores , Envelhecimento , Doença de Alzheimer/etiologia , Animais , Encéfalo , Modelos Animais de Doenças , Camundongos , Emaranhados Neurofibrilares/metabolismo , Proteínas tau/metabolismo
9.
Nat Commun ; 12(1): 2021, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795684

RESUMO

DNA methylation is a critical regulatory mechanism implicated in development, learning, memory, and disease in the human brain. Here we have elucidated DNA methylation changes during recent human brain evolution. We demonstrate dynamic evolutionary trajectories of DNA methylation in cell-type and cytosine-context specific manner. Specifically, DNA methylation in non-CG context, namely CH methylation, has increased (hypermethylation) in neuronal gene bodies during human brain evolution, contributing to human-specific down-regulation of genes and co-expression modules. The effects of CH hypermethylation is particularly pronounced in early development and neuronal subtypes. In contrast, DNA methylation in CG context shows pronounced reduction (hypomethylation) in human brains, notably in cis-regulatory regions, leading to upregulation of downstream genes. We show that the majority of differential CG methylation between neurons and oligodendrocytes originated before the divergence of hominoids and catarrhine monkeys, and harbors strong signal for genetic risk for schizophrenia. Remarkably, a substantial portion of differential CG methylation between neurons and oligodendrocytes emerged in the human lineage since the divergence from the chimpanzee lineage and carries significant genetic risk for schizophrenia. Therefore, recent epigenetic evolution of human cortex has shaped the cellular regulatory landscape and contributed to the increased vulnerability to neuropsychiatric diseases.


Assuntos
Encéfalo/metabolismo , Metilação de DNA , Epigênese Genética , Epigenômica , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Encéfalo/citologia , Evolução Molecular , Regulação da Expressão Gênica , Humanos , Neurônios/metabolismo , Oligodendroglia/metabolismo , Pan troglodytes/genética , Fatores de Risco , Esquizofrenia/genética
10.
Magn Reson Imaging ; 77: 194-203, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33359631

RESUMO

BACKGROUND: Diffusion MRI (dMRI) data acquisition protocols are well-established on modern high-field clinical scanners for human studies. However, these protocols are not suitable for the chimpanzee (or other large-brained mammals) because of its substantial difference in head geometry and brain volume compared with humans. Therefore, an optimal dMRI data acquisition protocol dedicated to chimpanzee neuroimaging is needed. METHODS: A multi-shot (4 segments) double spin-echo echo-planar imaging (MS-EPI) sequence and a single-shot double spin-echo EPI (SS-EPI) sequence were optimized separately for in vivo dMRI data acquisition of chimpanzees using a clinical 3T scanner. Correction for severe susceptibility-induced image distortion and signal drop-off of the chimpanzee brain was performed and evaluated using FSL software. DTI indices in different brain regions and probabilistic tractography were compared. A separate DTI data set from n=34 chimpanzees (13 to 56 years old) was collected using the optimal protocol. Age-related changes in diffusivity indices of optic nerve fibers were evaluated. RESULTS: The SS-EPI sequence acquired dMRI data of the chimpanzee brain with approximately doubled the SNR as the MS-EPI sequence given the same scan time. The quality of white matter fiber tracking from the SS-EPI data was much higher than that from MS-EPI data. However, quantitative analysis of DTI indices showed no difference in most ROIs between the SS-EPI and MS-EPI sequences. The progressive evolution of diffusivity indices of optic nerves indicated mild changes in fiber bundles of chimpanzees aged 40 years and above. CONCLUSION: The single-shot EPI-based acquisition protocol provided better image quality of dMRI for chimpanzee brains and is recommended for in vivo dMRI study or clinical diagnosis of chimpanzees (or other large animals) using a clinical scanner. Also, the tendency of FA decrease or diffusivity increase in the optic nerve of aged chimpanzees was seen but did not show significant age-related changes, suggesting aging may have less impact on optic nerve fiber integrity of chimpanzees, in contrast to previous results for both macaque monkeys and humans.


Assuntos
Envelhecimento/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imagem de Difusão por Ressonância Magnética/métodos , Nervo Óptico/diagnóstico por imagem , Animais , Imagem Ecoplanar/métodos , Feminino , Masculino , Neuroimagem , Pan troglodytes
12.
Brain Struct Funct ; 225(8): 2521-2531, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32909100

RESUMO

The hippocampal formation is important for higher brain functions such as spatial navigation and the consolidation of memory, and it contributes to abilities thought to be uniquely human, yet little is known about how the human hippocampal formation compares to that of our closest living relatives, the chimpanzees. To gain insight into the comparative organization of the hippocampal formation in catarrhine primates, we quantified neurons stereologically in its major subdivisions-the granular layer of the dentate gyrus, CA4, CA2-3, CA1, and the subiculum-in archival brain tissue from six chimpanzees ranging from 29 to 43 years of age. We also sought evidence of Aß deposition and hyperphosphorylated tau in the hippocampus and adjacent neocortex. A 42-year-old animal had moderate cerebral Aß-amyloid angiopathy and tauopathy, but Aß was absent and tauopathy was minimal in the others. Quantitatively, granule cells of the dentate gyrus were most numerous, followed by CA1, subiculum, CA4, and CA2-3. In the context of prior investigations of rhesus monkeys and humans, our findings indicate that, in the hippocampal formation as a whole, the proportions of neurons in CA1 and the subiculum progressively increase, and the proportion of dentate granule cells decreases, from rhesus monkeys to chimpanzees to humans. Because CA1 and the subiculum engender key hippocampal projection pathways to the neocortex, and because the neocortex varies in volume and anatomical organization among these species, these findings suggest that differences in the proportions of neurons in hippocampal subregions of catarrhine primates may be linked to neocortical evolution.


Assuntos
Hipocampo/citologia , Neurônios/citologia , Peptídeos beta-Amiloides/metabolismo , Animais , Hipocampo/metabolismo , Humanos , Macaca mulatta , Masculino , Neurônios/metabolismo , Pan troglodytes , Fosforilação , Proteínas tau/metabolismo
13.
Brain ; 142(12): 3991-4002, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31724729

RESUMO

The genetic basis and human-specific character of schizophrenia has led to the hypothesis that human brain evolution may have played a role in the development of the disorder. We examined schizophrenia-related changes in brain connectivity in the context of evolutionary changes in human brain wiring by comparing in vivo neuroimaging data from humans and chimpanzees, one of our closest living evolutionary relatives and a species with which we share a very recent common ancestor. We contrasted the connectome layout between the chimpanzee and human brain and compared differences with the pattern of schizophrenia-related changes in brain connectivity as observed in patients. We show evidence of evolutionary modifications of human brain connectivity to significantly overlap with the cortical pattern of schizophrenia-related dysconnectivity (P < 0.001, permutation testing). We validated these effects in three additional, independent schizophrenia datasets. We further assessed the specificity of effects by examining brain dysconnectivity patterns in seven other psychiatric and neurological brain disorders (including, among others, major depressive disorder and obsessive-compulsive disorder, arguably characterized by behavioural symptoms that are less specific to humans), which showed no such associations with modifications of human brain connectivity. Comparisons of brain connectivity across humans, chimpanzee and macaques further suggest that features of connectivity that evolved in the human lineage showed the strongest association to the disorder, that is, brain circuits potentially related to human evolutionary specializations. Taken together, our findings suggest that human-specific features of connectome organization may be enriched for changes in brain connectivity related to schizophrenia. Modifications in human brain connectivity in service of higher order brain functions may have potentially also rendered the brain vulnerable to brain dysfunction.


Assuntos
Evolução Biológica , Encéfalo/fisiopatologia , Rede Nervosa/fisiopatologia , Esquizofrenia/fisiopatologia , Adulto , Animais , Encéfalo/diagnóstico por imagem , Conectoma , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Pan troglodytes , Esquizofrenia/diagnóstico por imagem
14.
Proc Natl Acad Sci U S A ; 116(48): 24334-24342, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31712436

RESUMO

Recent discussions of human brain evolution have largely focused on increased neuron numbers and changes in their connectivity and expression. However, it is increasingly appreciated that oligodendrocytes play important roles in cognitive function and disease. Whether both cell types follow similar or distinctive evolutionary trajectories is not known. We examined the transcriptomes of neurons and oligodendrocytes in the frontal cortex of humans, chimpanzees, and rhesus macaques. We identified human-specific trajectories of gene expression in neurons and oligodendrocytes and show that both cell types exhibit human-specific up-regulation. Moreover, oligodendrocytes have undergone more pronounced accelerated gene expression evolution in the human lineage compared to neurons. We highlighted human-specific coexpression networks with specific functions. Our data suggest that oligodendrocyte human-specific networks are enriched for alternative splicing and transcriptional regulation. Oligodendrocyte networks are also enriched for variants associated with schizophrenia and other neuropsychiatric disorders. Such enrichments were not found in neuronal networks. These results offer a glimpse into the molecular mechanisms of oligodendrocytes during evolution and how such mechanisms are associated with neuropsychiatric disorders.


Assuntos
Encéfalo/citologia , Expressão Gênica , Oligodendroglia/citologia , Oligodendroglia/fisiologia , Processamento Alternativo , Animais , Evolução Biológica , Cognição/fisiologia , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Humanos , Macaca mulatta , Transtornos Mentais/genética , Pan troglodytes , Especificidade da Espécie
15.
Nat Commun ; 10(1): 4839, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31649260

RESUMO

Cognitive brain networks such as the default-mode network (DMN), frontoparietal network, and salience network, are key functional networks of the human brain. Here we show that the rapid evolutionary cortical expansion of cognitive networks in the human brain, and most pronounced the DMN, runs parallel with high expression of human-accelerated genes (HAR genes). Using comparative transcriptomics analysis, we present that HAR genes are differentially more expressed in higher-order cognitive networks in humans compared to chimpanzees and macaques and that genes with high expression in the DMN are involved in synapse and dendrite formation. Moreover, HAR and DMN genes show significant associations with individual variations in DMN functional activity, intelligence, sociability, and mental conditions such as schizophrenia and autism. Our results suggest that the expansion of higher-order functional networks subserving increasing cognitive properties has been an important locus of genetic changes in recent human brain evolution.


Assuntos
Encéfalo/metabolismo , Cognição , Evolução Molecular , Vias Neurais/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Dendritos , Perfilação da Expressão Gênica , Humanos , Macaca/genética , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem , Pan troglodytes/genética , Sinapses
16.
J Neurosci ; 39(39): 7748-7758, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31477568

RESUMO

Humans have bred different lineages of domestic dogs for different tasks such as hunting, herding, guarding, or companionship. These behavioral differences must be the result of underlying neural differences, but surprisingly, this topic has gone largely unexplored. The current study examined whether and how selective breeding by humans has altered the gross organization of the brain in dogs. We assessed regional volumetric variation in MRI studies of 62 male and female dogs of 33 breeds. Neuroanatomical variation is plainly visible across breeds. This variation is distributed nonrandomly across the brain. A whole-brain, data-driven independent components analysis established that specific regional subnetworks covary significantly with each other. Variation in these networks is not simply the result of variation in total brain size, total body size, or skull shape. Furthermore, the anatomy of these networks correlates significantly with different behavioral specialization(s) such as sight hunting, scent hunting, guarding, and companionship. Importantly, a phylogenetic analysis revealed that most change has occurred in the terminal branches of the dog phylogenetic tree, indicating strong, recent selection in individual breeds. Together, these results establish that brain anatomy varies significantly in dogs, likely due to human-applied selection for behavior.SIGNIFICANCE STATEMENT Dog breeds are known to vary in cognition, temperament, and behavior, but the neural origins of this variation are unknown. In an MRI-based analysis, we found that brain anatomy covaries significantly with behavioral specializations such as sight hunting, scent hunting, guarding, and companionship. Neuroanatomical variation is not simply driven by brain size, body size, or skull shape, and is focused in specific networks of regions. Nearly all of the identified variation occurs in the terminal branches of the dog phylogenetic tree, indicating strong, recent selection in individual breeds. These results indicate that through selective breeding, humans have significantly altered the brains of different lineages of domestic dogs in different ways.


Assuntos
Encéfalo/anatomia & histologia , Cães/fisiologia , Sistema Nervoso/anatomia & histologia , Animais , Comportamento Animal , Tamanho Corporal , Encéfalo/diagnóstico por imagem , Cruzamento , Feminino , Variação Genética , Vínculo Humano-Animal , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/anatomia & histologia , Rede Nervosa/diagnóstico por imagem , Sistema Nervoso/diagnóstico por imagem , Tamanho do Órgão , Filogenia , Comportamento Predatório , Crânio/anatomia & histologia , Crânio/diagnóstico por imagem , Olfato/fisiologia , Especificidade da Espécie
17.
Brain Behav Evol ; 93(2-3): 92-107, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31416070

RESUMO

The common marmoset, a New World (platyrrhine) monkey, is currently being fast-tracked as a non-human primate model species, especially for genetic modification but also as a general-purpose model for research on the brain and behavior bearing on the human condition. Compared to the currently dominant primate model, the catarrhine macaque monkey, marmosets are notable for certain evolutionary specializations, including their propensity for twin births, their very small size (a result of phyletic dwarfism), and features related to their small size (rapid development and relatively short lifespan), which result in these animals yielding experimental results more rapidly and at lower cost. Macaques, however, have their own advantages. Importantly, macaques are more closely related to humans (which are also catarrhine primates) than are marmosets, sharing approximately 20 million more years of common descent, and are demonstrably more similar to humans in a variety of genomic, molecular, and neurobiological characteristics. Furthermore, the very specializations of marmosets that make them attractive as experimental subjects, such as their rapid development and short lifespan, are ways in which marmosets differ from humans and in which macaques more closely resemble humans. These facts warrant careful consideration of the trade-offs between convenience and cost, on the one hand, and biological realism, on the other, in choosing between non-human primate models of human biology. Notwithstanding the advantages marmosets offer as models, prudence requires continued commitment to research on macaques and other primate species.


Assuntos
Evolução Biológica , Callithrix/anatomia & histologia , Macaca/anatomia & histologia , Modelos Animais , Sistema Nervoso/anatomia & histologia , Animais , Callithrix/fisiologia , Macaca/fisiologia
19.
Genome Biol ; 20(1): 135, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31288836

RESUMO

BACKGROUND: The importance of cell type-specific epigenetic variation of non-coding regions in neuropsychiatric disorders is increasingly appreciated, yet data from disease brains are conspicuously lacking. We generate cell type-specific whole-genome methylomes (N = 95) and transcriptomes (N = 89) from neurons and oligodendrocytes obtained from brain tissue of patients with schizophrenia and matched controls. RESULTS: The methylomes of the two cell types are highly distinct, with the majority of differential DNA methylation occurring in non-coding regions. DNA methylation differences between cases and controls are subtle compared to cell type differences, yet robust against permuted data and validated in targeted deep-sequencing analyses. Differential DNA methylation between control and schizophrenia tends to occur in cell type differentially methylated sites, highlighting the significance of cell type-specific epigenetic dysregulation in a complex neuropsychiatric disorder. CONCLUSIONS: Our results provide novel and comprehensive methylome and transcriptome data from distinct cell populations within patient-derived brain tissues. This data clearly demonstrate that cell type epigenetic-differentiated sites are preferentially targeted by disease-associated epigenetic dysregulation. We further show reduced cell type epigenetic distinction in schizophrenia.


Assuntos
Encéfalo/metabolismo , Metilação de DNA , Epigênese Genética , Esquizofrenia/genética , Encéfalo/citologia , Estudos de Casos e Controles , Humanos , Esquizofrenia/metabolismo
20.
Proc Natl Acad Sci U S A ; 116(14): 7101-7106, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30886094

RESUMO

The development of complex cognitive functions during human evolution coincides with pronounced encephalization and expansion of white matter, the brain's infrastructure for region-to-region communication. We investigated adaptations of the human macroscale brain network by comparing human brain wiring with that of the chimpanzee, one of our closest living primate relatives. White matter connectivity networks were reconstructed using diffusion-weighted MRI in humans (n = 57) and chimpanzees (n = 20) and then analyzed using network neuroscience tools. We demonstrate higher network centrality of connections linking multimodal association areas in humans compared with chimpanzees, together with a more pronounced modular topology of the human connectome. Furthermore, connections observed in humans but not in chimpanzees particularly link multimodal areas of the temporal, lateral parietal, and inferior frontal cortices, including tracts important for language processing. Network analysis demonstrates a particularly high contribution of these connections to global network integration in the human brain. Taken together, our comparative connectome findings suggest an evolutionary shift in the human brain toward investment of neural resources in multimodal connectivity facilitating neural integration, combined with an increase in language-related connectivity supporting functional specialization.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Imagem Multimodal/métodos , Adulto , Idoso , Animais , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Cognição , Conectoma/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Idioma , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/fisiologia , Pan troglodytes , Substância Branca/diagnóstico por imagem , Substância Branca/crescimento & desenvolvimento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA