Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 5: 3074, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24445949

RESUMO

The ability to perform computations on encrypted data is a powerful tool for protecting privacy. Recently, protocols to achieve this on classical computing systems have been found. Here, we present an efficient solution to the quantum analogue of this problem that enables arbitrary quantum computations to be carried out on encrypted quantum data. We prove that an untrusted server can implement a universal set of quantum gates on encrypted quantum bits (qubits) without learning any information about the inputs, while the client, knowing the decryption key, can easily decrypt the results of the computation. We experimentally demonstrate, using single photons and linear optics, the encryption and decryption scheme on a set of gates sufficient for arbitrary quantum computations. As our protocol requires few extra resources compared with other schemes it can be easily incorporated into the design of future quantum servers. These results will play a key role in enabling the development of secure distributed quantum systems.

2.
Sci Rep ; 3: 1582, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23545597

RESUMO

Quantum information science promises transformative impact over a range of key technologies in computing, communication, and sensing. A prominent example uses entangled photons to overcome the resolution-degrading effects of dispersion in the medical-imaging technology, optical coherence tomography. The quantum solution introduces new challenges: inherently low signal and artifacts, additional unwanted signal features. It has recently been shown that entanglement is not a requirement for automatic dispersion cancellation. Such classical techniques could solve the low-signal problem, however they all still suffer from artifacts. Here, we introduce a method of chirped-pulse interferometry based on shaped laser pulses, and use it to produce artifact-free, high-resolution, dispersion-cancelled images of the internal structure of a biological sample. Our work fulfills one of the promises of quantum technologies: automatic-dispersion-cancellation interferometry in biomedical imaging. It also shows how subtle differences between a quantum technique and its classical analogue may have unforeseen, yet beneficial, consequences.


Assuntos
Aumento da Imagem/instrumentação , Interferometria/instrumentação , Nefelometria e Turbidimetria/instrumentação , Refratometria/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Teoria Quântica
3.
Nature ; 478(7369): 360-3, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21993627

RESUMO

Single photons are excellent quantum information carriers: they were used in the earliest demonstrations of entanglement and in the production of the highest-quality entanglement reported so far. However, current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed, single photons, and linear optics gates are inherently probabilistic. Here we introduce a deterministic process--coherent photon conversion (CPC)--that provides a new way to generate and process complex, multiquanta states for photonic quantum information applications. The technique uses classically pumped nonlinearities to induce coherent oscillations between orthogonal states of multiple quantum excitations. One example of CPC, based on a pumped four-wave-mixing interaction, is shown to yield a single, versatile process that provides a full set of photonic quantum processing tools. This set satisfies the DiVincenzo criteria for a scalable quantum computing architecture, including deterministic multiqubit entanglement gates (based on a novel form of photon-photon interaction), high-quality heralded single- and multiphoton states free from higher-order imperfections, and robust, high-efficiency detection. It can also be used to produce heralded multiphoton entanglement, create optically switchable quantum circuits and implement an improved form of down-conversion with reduced higher-order effects. Such tools are valuable building blocks for many quantum-enabled technologies. Finally, using photonic crystal fibres we experimentally demonstrate quantum correlations arising from a four-colour nonlinear process suitable for CPC and use these measurements to study the feasibility of reaching the deterministic regime with current technology. Our scheme, which is based on interacting bosonic fields, is not restricted to optical systems but could also be implemented in optomechanical, electromechanical and superconducting systems with extremely strong intrinsic nonlinearities. Furthermore, exploiting higher-order nonlinearities with multiple pump fields yields a mechanism for multiparty mediation of the complex, coherent dynamics.

4.
Phys Rev Lett ; 106(11): 110505, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21469853

RESUMO

We present and experimentally demonstrate a communication protocol that employs shared entanglement to reduce errors when sending a bit over a particular noisy classical channel. Specifically, it is shown that given a single use of this channel, one can transmit a bit with higher success probability when the sender and receiver share entanglement compared to the best possible strategy when they do not. The experiment is realized using polarization-entangled photon pairs, whose quantum correlations play a critical role in both the encoding and decoding of the classical message. Experimentally, we find that a bit can be successfully transmitted with probability 0.891±0.002, which is close to the theoretical maximum of (2+2(-1/2))/3≈0.902 and is significantly above the optimal classical strategy, which yields 5/6≈0.833.

5.
Phys Rev Lett ; 103(2): 020503, 2009 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-19659190

RESUMO

We report the first experimental generation and characterization of a six-photon Dicke state. The produced state shows a fidelity of F=0.56+/-0.02 with respect to an ideal Dicke state and violates a witness detecting genuine six-qubit entanglement by 4 standard deviations. We confirm characteristic Dicke properties of our resource and demonstrate its versatility by projecting out four- and five-photon Dicke states, as well as four-photon Greenberger-Horne-Zeilinger and W states. We also show that Dicke states have interesting applications in multiparty quantum networking protocols such as open-destination teleportation, telecloning, and quantum secret sharing.

6.
Phys Rev Lett ; 98(22): 223601, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17677842

RESUMO

We demonstrate phase super-resolution in the absence of entangled states. The key insight is to use the inherent time-reversal symmetry of quantum mechanics: our theory shows that it is possible to measure, as opposed to prepare, entangled states. Our approach is robust, requiring only photons that exhibit classical interference: we experimentally demonstrate high-visibility phase super-resolution with three, four, and six photons using a standard laser and photon counters. Our six-photon experiment demonstrates the best phase super-resolution yet reported with high visibility and resolution.

7.
Phys Rev Lett ; 98(14): 140501, 2007 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-17501253

RESUMO

We report the first experimental demonstration of an all-optical one-way implementation of Deutsch's quantum algorithm on a four-qubit cluster state. All the possible configurations of a balanced or constant function acting on a two-qubit register are realized within the measurement-based model for quantum computation. The experimental results are in excellent agreement with the theoretical model, therefore demonstrating the successful performance of the algorithm.


Assuntos
Algoritmos , Computadores , Teoria Quântica
8.
Phys Rev Lett ; 99(25): 250503, 2007 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-18233507

RESUMO

We report the experimental demonstration of a one-way quantum protocol reliably operating in the presence of decoherence. Information is protected by designing an appropriate decoherence-free sub-space for a cluster state resource. We demonstrate our scheme in an all-optical setup, encoding the information into the polarization states of four photons. A measurement-based one-way information-transfer protocol is performed with the photons exposed to severe symmetric phase-damping noise. Remarkable protection of information is accomplished, delivering nearly ideal outcomes.

9.
Phys Rev Lett ; 95(21): 210504, 2005 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-16384124

RESUMO

We demonstrate a new architecture for an optical entangling gate that is significantly simpler than previous realizations, using partially polarizing beam splitters so that only a single optical mode-matching condition is required. We demonstrate operation of a controlled-z gate in both continuous-wave and pulsed regimes of operation, fully characterizing it in each case using quantum process tomography. We also demonstrate a fully resolving, nondeterministic optical Bell-state analyzer based on this controlled-z gate. This new architecture is ideally suited to guided optics implementations of optical gates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA