Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894777

RESUMO

Brugada Syndrome (BrS) is a rare inherited cardiac arrhythmia causing potentially fatal ventricular tachycardia or fibrillation, mainly occurring during rest or sleep in young individuals without heart structural issues. It increases the risk of sudden cardiac death, and its characteristic feature is an abnormal ST segment elevation on the ECG. While BrS has diverse genetic origins, a subset of cases can be conducted to mutations in the SCN5A gene, which encodes for the Nav1.5 sodium channel. Our study focused on three novel SCN5A mutations (p.A344S, p.N347K, and p.D349N) found in unrelated BrS families. Using patch clamp experiments, we found that these mutations disrupted sodium currents: p.A344S reduced current density, while p.N347K and p.D349N completely abolished it, leading to altered voltage dependence and inactivation kinetics when co-expressed with normal channels. We also explored the effects of mexiletine treatment, which can modulate ion channel function. Interestingly, the p.N347K and p.D349N mutations responded well to the treatment, rescuing the current density, while p.A344S showed a limited response. Structural analysis revealed these mutations were positioned in key regions of the channel, impacting its stability and function. This research deepens our understanding of BrS by uncovering the complex relationship between genetic mutations, ion channel behavior, and potential therapeutic interventions.


Assuntos
Síndrome de Brugada , Humanos , Síndrome de Brugada/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Arritmias Cardíacas , Mutação
2.
Epilepsia ; 64(12): e222-e228, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37746765

RESUMO

Missense variants of hyperpolarization-activated, cyclic nucleotide-gated (HCN) ion channels cause variable phenotypes, ranging from mild generalized epilepsy to developmental and epileptic encephalopathy (DEE). Although variants of HCN1 are an established cause of DEE, those of HCN2 have been reported in generalized epilepsies. Here we describe the first case of DEE caused by the novel de novo heterozygous missense variant c.1379G>A (p.G460D) of HCN2. Functional characterization in transfected HEK293 cells and neonatal rat cortical neurons revealed that HCN2 p.G460D currents were strongly reduced compared to wild-type, consistent with a dominant negative loss-of-function effect. Immunofluorescence staining showed that mutant channels are retained within the cell and do not reach the membrane. Moreover, mutant HCN2 also affect HCN1 channels, by reducing the Ih current expressed by the HCN1-HCN2 heteromers. Due to the persistence of frequent seizures despite pharmacological polytherapy, the patient was treated with a ketogenic diet, with a significant and long-lasting reduction of episodes. In vitro experiments conducted in a ketogenic environment demonstrated that the clinical improvement observed with this dietary regimen was not mediated by a direct action on HCN2 activity. These results expand the clinical spectrum related to HCN2 channelopathies, further broadening our understanding of the pathogenesis of DEE.


Assuntos
Dieta Cetogênica , Epilepsia Generalizada , Humanos , Ratos , Animais , Canais de Potássio/genética , Canais de Potássio/metabolismo , Células HEK293 , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Epilepsia Generalizada/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos
3.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37047659

RESUMO

The development of high-throughput automated patch-clamp technology is a recent breakthrough in the field of Brugada syndrome research. Brugada syndrome is a heart disorder marked by abnormal electrocardiographic readings and an elevated risk of sudden cardiac death due to arrhythmias. Various experimental models, developed either in animals, cell lines, human tissue or computational simulation, play a crucial role in advancing our understanding of this condition, and developing effective treatments. In the perspective of the pathophysiological role of ion channels and their pharmacology, automated patch-clamp involves a robotic system that enables the simultaneous recording of electrical activity from multiple single cells at once, greatly improving the speed and efficiency of data collection. By combining this approach with the use of patient-derived cardiomyocytes, researchers are gaining a more comprehensive view of the underlying mechanisms of heart disease. This has led to the development of more effective treatments for those affected by cardiovascular conditions.


Assuntos
Síndrome de Brugada , Cardiopatias , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Miócitos Cardíacos/metabolismo , Síndrome de Brugada/metabolismo , Arritmias Cardíacas/metabolismo , Morte Súbita Cardíaca , Cardiopatias/metabolismo , Potenciais de Ação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA