Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Med ; 4(7): 457-477.e8, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37172578

RESUMO

BACKGROUND: The advent of chimeric antigen receptor (CAR) T cell therapies has transformed the treatment of hematological malignancies; however, broader therapeutic success of CAR T cells has been limited in solid tumors because of their frequently heterogeneous composition. Stress proteins in the MICA and MICB (MICA/B) family are broadly expressed by tumor cells following DNA damage but are rapidly shed to evade immune detection. METHODS: We have developed a novel CAR targeting the conserved α3 domain of MICA/B (3MICA/B CAR) and incorporated it into a multiplexed-engineered induced pluripotent stem cell (iPSC)-derived natural killer (NK) cell (3MICA/B CAR iNK) that expressed a shedding-resistant form of the CD16 Fc receptor to enable tumor recognition through two major targeting receptors. FINDINGS: We demonstrated that 3MICA/B CAR mitigates MICA/B shedding and inhibition via soluble MICA/B while simultaneously exhibiting antigen-specific anti-tumor reactivity across an expansive library of human cancer cell lines. Pre-clinical assessment of 3MICA/B CAR iNK cells demonstrated potent antigen-specific in vivo cytolytic activity against both solid and hematological xenograft models, which was further enhanced in combination with tumor-targeted therapeutic antibodies that activate the CD16 Fc receptor. CONCLUSIONS: Our work demonstrated 3MICA/B CAR iNK cells to be a promising multi-antigen-targeting cancer immunotherapy approach intended for solid tumors. FUNDING: Funded by Fate Therapeutics and NIH (R01CA238039).


Assuntos
Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linhagem Celular Tumoral , Imunoterapia Adotiva , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/transplante , Receptores Fc/metabolismo
2.
J Neurosci Res ; 100(1): 19-34, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32830380

RESUMO

The actions of endogenous opioids and nociceptin/orphanin FQ are mediated by four homologous G protein-coupled receptors that constitute the opioid receptor family. However, little is known about opioid systems in cyclostomes (living jawless fish) and how opioid systems might have evolved from invertebrates. Here, we leveraged de novo transcriptome and low-coverage whole-genome assembly in the Pacific hagfish (Eptatretus stoutii) to identify and characterize the first full-length coding sequence for a functional opioid receptor in a cyclostome. Additionally, we define two novel endogenous opioid precursors in this species that predict several novel opioid peptides. Bioinformatic analysis shows no closely related opioid receptor genes in invertebrates with regard either to the genomic organization or to conserved opioid receptor-specific sequences that are common in all vertebrates. Furthermore, no proteins analogous to vertebrate opioid precursors could be identified by genomic searches despite previous claims of protein or RNA-derived sequences in several invertebrate species. The presence of an expressed orthologous receptor and opioid precursors in the Pacific hagfish confirms that a functional opioid system was likely present in the common ancestor of all extant vertebrates some 550 million years ago, earlier than all previous authenticated accounts. We discuss the premise that the cyclostome and vertebrate opioid systems evolved from invertebrate systems concerned with antimicrobial defense and speculate that the high concentrations of opioid precursors in tissues such as the testes, gut, and activated immune cells are key remnants of this evolutionary role.


Assuntos
Feiticeiras (Peixe) , Analgésicos Opioides , Animais , Evolução Biológica , Evolução Molecular , Feiticeiras (Peixe)/genética , Peptídeos Opioides , Filogenia
3.
Proc Natl Acad Sci U S A ; 116(19): 9628-9633, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31019093

RESUMO

GGGGCC (G4C2) repeat expansion in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). One class of major pathogenic molecules in C9ORF72-ALS/FTD is dipeptide repeat proteins such as poly(GR), whose toxicity has been well documented in cellular and animal models. However, it is not known how poly(GR) toxicity can be alleviated, especially in patient neurons. Using Drosophila as a model system in an unbiased genetic screen, we identified a number of genetic modifiers of poly(GR) toxicity. Surprisingly, partial loss of function of Ku80, an essential DNA repair protein, suppressed poly(GR)-induced retinal degeneration in flies. Ku80 expression was greatly elevated in flies expressing poly(GR) and in C9ORF72 iPSC-derived patient neurons. As a result, the levels of phosphorylated ATM and P53 as well as other downstream proapoptotic proteins such as PUMA, Bax, and cleaved caspase-3 were all significantly increased in C9ORF72 patient neurons. The increase in the levels of Ku80 and some downstream signaling proteins was prevented by CRISPR-Cas9-mediated deletion of expanded G4C2 repeats. More importantly, partial loss of function of Ku80 in these neurons through CRISPR/Cas9-mediated ablation or small RNAs-mediated knockdown suppressed the apoptotic pathway. Thus, partial inhibition of the overactivated Ku80-dependent DNA repair pathway is a promising therapeutic approach in C9ORF72-ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Reparo do DNA , Demência Frontotemporal , Autoantígeno Ku , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Drosophila melanogaster , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Sequências Repetitivas de Aminoácidos
4.
Adv Genomics Genet ; 8: 23-33, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31031559

RESUMO

BACKGROUND: Frontotemporal lobar degeneration (FTLD) is a leading cause of dementia, and elucidating its genetic underpinnings is critical. FTLD research centers typically recruit patient cohorts that are limited by the center's specialty and the ways in which its geographic location affects the ethnic makeup of research participants. Novel sources of data are needed to get population estimates of the contribution of variants in known FTLD-associated genes. METHODS: We compared FLTD-associated genetic variants in microtubule-associated protein tau (MAPT), progranulin (GRN), and chromosome nine open reading frame 72 (C9ORF72) from an academic research cohort and a commercial clinical genetics laboratory. Pathogenicity was assessed using guidelines of the American College of Medical Genetics and Genomics and a rule-based DNA variant assessment system. We conducted chart reviews on patients with novel or rare disease-associated variants. RESULTS: A total of 387 cases with FTLD-associated variants from the commercial (n=2,082) and 78 cases from the academic cohort (n=2,089) were included for analysis. In the academic cohort, the most frequent pathogenic variants were C9ORF72 expansions (63%, n=49), followed by GRN (26%, n=20) and MAPT (11%, n=9). Each gene's contribution to disease was similarly ranked in the commercial laboratory but differed in magnitude: C9ORF72 (89%, n=345), GRN (6%, n=24), and MAPT (5%, n=19). Of the 37 unique GRN/MAPT variants identified, only six were found in both cohorts. Clinicopathological data from patients in the academic cohort strengthened classification of two novel GRN variant as pathogenic (p.Pro166Leufs*2, p.Gln406*) and one GRN variant of unknown significance as a possible rare risk variant (p.Cys139Arg). CONCLUSION: Differences in gene frequencies and identification of unique pathogenic alleles in each cohort demonstrate the importance of data sharing between academia and community laboratories. Using shared data sources with well-characterized clinical phenotypes for individual variants can enhance interpretation of variant pathogenicity and inform clinical management of at-risk patients and families.

5.
Neuroimage Clin ; 14: 286-297, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28337409

RESUMO

Hexanucleotide repeat expansions in C9ORF72 are the most common known genetic cause of familial and sporadic frontotemporal dementia and amyotrophic lateral sclerosis. Previous work has shown that patients with behavioral variant frontotemporal dementia due to C9ORF72 show salience and sensorimotor network disruptions comparable to those seen in sporadic behavioral variant frontotemporal dementia, but it remains unknown how early in the lifespan these and other changes in brain structure and function arise. To gain insights into this question, we compared 15 presymptomatic carriers (age 43.7 ± 10.2 years, nine females) to matched healthy controls. We used voxel-based morphometry to assess gray matter, diffusion tensor imaging to interrogate white matter tracts, and task-free functional MRI to probe the salience, sensorimotor, default mode, and medial pulvinar thalamus-seeded networks. We further used a retrospective chart review to ascertain psychiatric histories in carriers and their non-carrier family members. Carriers showed normal cognition and behavior despite gray matter volume and brain connectivity deficits that were apparent as early as the fourth decade of life. Gray matter volume deficits were topographically similar though less severe than those in patients with behavioral variant frontotemporal dementia due to C9ORF72, with major foci in cingulate, insula, thalamus, and striatum. Reduced white matter integrity was found in the corpus callosum, cingulum bundles, corticospinal tracts, uncinate fasciculi and inferior longitudinal fasciculi. Intrinsic connectivity deficits were detected in all four networks but most prominent in salience and medial pulvinar thalamus-seeded networks. Carrier and control groups showed comparable relationships between imaging metrics and age, suggesting that deficits emerge during early adulthood. Carriers and non-carrier family members had comparable lifetime histories of psychiatric symptoms. Taken together, the findings suggest that presymptomatic C9ORF72 expansion carriers exhibit functionally compensated brain volume and connectivity deficits that are similar, though less severe, to those reported during the symptomatic phase. The early adulthood emergence of these deficits suggests that they represent aberrant network patterning during development, an early neurodegeneration prodrome, or both.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico por imagem , Esclerose Lateral Amiotrófica/genética , Expansão das Repetições de DNA/genética , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/genética , Proteínas/genética , Adulto , Doenças Assintomáticas , Encéfalo/diagnóstico por imagem , Proteína C9orf72 , Imagem de Tensor de Difusão , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Testes Neuropsicológicos , Oxigênio/sangue
6.
Front Mol Neurosci ; 9: 113, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877110

RESUMO

An abnormally expanded GGGGCC repeat in C9ORF72 is the most frequent causal mutation associated with amyotrophic lateral sclerosis (ALS)/frontotemporal lobar degeneration (FTLD). Both gain-of-function (gf) and loss-of-function (lf) mechanisms have been involved in C9ORF72 related ALS/FTLD. The gf mechanism of C9ORF72 has been studied in various animal models but not in C. elegans. In the present study, we described mutant C9ORF72 modeling in C. elegans and report the finding of two suppressor genes. We made transgenes containing 9 or 29 repeats of GGGGCC in C9ORF72, driven by either the hsp-16 promoters or the unc-119 promoter. Transgenic worms were made to carry such transgenes. Phenotypic analysis of those animals revealed that Phsp-16::(G4C2)29::GFP transgenic animals (EAB 135) displayed severe paralysis by the second day of adulthood, followed by lethality, which phenotypes were less severe in Phsp-16::(G4C2)9::GFP transgenic animals (EAB242), and absent in control strains expressing empty vectors. Suppressor genes of this locomotor phenotype were pursued by introducing mutations with ethyl methanesulfonate in EAB135, screening mutant strains that moved faster than EAB135 by a food-ring assay, identifying mutations by whole-genome sequencing and testing the underlying mechanism of the suppressor genes either by employing RNA interference studies or C. elegans genetics. Three mutant strains, EAB164, EAB165 and EAB167, were identified. Eight suppressor genes carrying nonsense/canonical splicing site mutations were confirmed, among which a nonsense mutation of F57A10.2/VAMP was found in all three mutant strains, and a nonsense mutation of acp-4/ACP2 was only found in EAB164. Knock down/out of those two genes in EAB135 animals by feeding RNAi/introducing a known acp-4 null allele phenocopied the suppression of the C9ORF72 variant related movement defect in the mutant strains. Translational conformation in a mammalian system is required, but our worm data suggest that altering acp-4/ACP2 encoding lysosomal acid phosphatase may provide a potential therapeutic method of reducing acp-4/ACP2 levels, as opposed or complementary to directly reducing C9ORF72, to relieve C9ORF72-ALS phenotypes. It also suggests that the C9ORF72-ALS/FTLD may share a pathophysiologic mechanism with vesicle-associated membrane protein-associated protein B, a homolog of F57A10.2/VAMP, which is a proven ALS8 gene.

7.
Brain ; 139(Pt 12): 3202-3216, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27797809

RESUMO

SEE SCABER AND TALBOT DOI101093/AWW264 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: A GGGGCC repeat expansion in C9orf72 leads to frontotemporal dementia and/or amyotrophic lateral sclerosis. Diverse pathological features have been identified, and their disease relevance remains much debated. Here, we describe two illuminating patients with frontotemporal dementia due to the C9orf72 repeat expansion. Case 1 was a 65-year-old female with behavioural variant frontotemporal dementia accompanied by focal degeneration in subgenual anterior cingulate cortex, amygdala, and medial pulvinar thalamus. At autopsy, widespread RNA foci and dipeptide repeat protein inclusions were observed, but TDP-43 pathology was nearly absent, even in degenerating brain regions. Case 2 was a 74-year-old female with atypical frontotemporal dementia-motor neuron disease who underwent temporal lobe resection for epilepsy 5 years prior to her first frontotemporal dementia symptoms. Archival surgical resection tissue contained RNA foci, dipeptide repeat protein inclusions, and loss of nuclear TDP-43 but no TDP-43 inclusions despite florid TDP-43 inclusions at autopsy 8 years after first symptoms. These findings suggest that C9orf72-specific phenomena may impact brain structure and function and emerge before first symptoms and TDP-43 aggregation.


Assuntos
Expansão das Repetições de DNA/genética , Proteínas/genética , Idoso , Proteína C9orf72 , Proteínas de Ligação a DNA/metabolismo , Feminino , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Demência Frontotemporal/fisiopatologia , Humanos
8.
Stem Cells Transl Med ; 5(11): 1461-1472, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27369896

RESUMO

: Induced pluripotent stem cells (iPSCs) offer an unlimited resource of cells to be used for the study of underlying molecular biology of disease, therapeutic drug screening, and transplant-based regenerative medicine. However, methods for the directed differentiation of skeletal muscle for these purposes remain scarce and incomplete. Here, we present a novel, small molecule-based protocol for the generation of multinucleated skeletal myotubes using eight independent iPSC lines. Through combinatorial inhibition of phosphoinositide 3-kinase (PI3K) and glycogen synthase kinase 3ß (GSK3ß) with addition of bone morphogenic protein 4 (BMP4) and fibroblast growth factor 2 (FGF2), we report up to 64% conversion of iPSCs into the myogenic program by day 36 as indicated by MYOG+ cell populations. These cells began to exhibit spontaneous contractions as early as 34 days in vitro in the presence of a serum-free medium formulation. We used this protocol to obtain iPSC-derived muscle cells from frontotemporal dementia (FTD) patients harboring C9orf72 hexanucleotide repeat expansions (rGGGGCC), sporadic FTD, and unaffected controls. iPSCs derived from rGGGGCC carriers contained RNA foci but did not vary in differentiation efficiency when compared to unaffected controls nor display mislocalized TDP-43 after as many as 120 days in vitro. This study presents a rapid, efficient, and transgene-free method for generating multinucleated skeletal myotubes from iPSCs and a resource for further modeling the role of skeletal muscle in amyotrophic lateral sclerosis and other motor neuron diseases. SIGNIFICANCE: Protocols to produce skeletal myotubes for disease modeling or therapy are scarce and incomplete. The present study efficiently generates functional skeletal myotubes from human induced pluripotent stem cells using a small molecule-based approach. Using this strategy, terminal myogenic induction of up to 64% in 36 days and spontaneously contractile myotubes within 34 days were achieved. Myotubes derived from patients carrying the C9orf72 repeat expansion show no change in differentiation efficiency and normal TDP-43 localization after as many as 120 days in vitro when compared to unaffected controls. This study provides an efficient, novel protocol for the generation of skeletal myotubes from human induced pluripotent stem cells that may serve as a valuable tool in drug discovery and modeling of musculoskeletal and neuromuscular diseases.

9.
Psychiatry Res ; 235: 200-2, 2016 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-26723138

RESUMO

A pathologic hexanucleotide repeat expansion in C9orf72 causes frontotemporal dementia (FTD) or amyotrophic lateral sclerosis (ALS). Behavioral abnormalities can also occur among mutation carriers with FTD, but it is uncertain whether such mutations occur among persons with psychoses per se. Among participants in a genetic study of psychoses (N=739), two pairs of related individuals had C9orf72 expansions, of whom three were diagnosed with schizophrenia (SZ) / schizoaffective disorder (SZA), but their clinical features did not suggest dementia or ALS. A few patients with SZ/SZA carry C9orf72 repeat expansions; such individuals are highly likely to develop FTD/ALS.


Assuntos
Expansão das Repetições de DNA , Demência Frontotemporal/genética , Proteínas/genética , Transtornos Psicóticos/genética , Esquizofrenia/genética , Adulto , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/psicologia , Proteína C9orf72 , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Psicologia do Esquizofrênico
10.
Neurocase ; 22(1): 76-83, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26040468

RESUMO

Patients with frontotemporal lobar degeneration (FTLD) can show superimposed amyloid pathology, though the impact of amyloid on the clinical presentation of FTLD is not well characterized. This cross-sectional case-control study compared clinical features, fluorodeoxyglucose-positron emission tomography metabolism and gray matter volume loss in 30 patients with familial FTLD in whom amyloid status was confirmed with autopsy or Pittsburgh compound B-PET. Compared to the amyloid-negative patients, the amyloid-positive patients performed significantly worse on several cognitive tests and showed hypometabolism and volume loss in more temporoparietal regions. Our results suggest that in FTLD amyloid positivity is associated with a more Alzheimer's disease-like pattern of neurodegeneration.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Encéfalo/patologia , Demência Frontotemporal/patologia , Degeneração Lobar Frontotemporal/patologia , Substância Cinzenta/patologia , Idoso , Encéfalo/metabolismo , Estudos de Casos e Controles , Estudos Transversais , Feminino , Demência Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Substância Cinzenta/metabolismo , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
11.
Neurocase ; 22(2): 161-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26304661

RESUMO

We report a diagnostically challenging case of a 64-year-old man with a history of remote head trauma who developed mild behavioral changes and dyscalculia. He was diagnosed with clinical Alzheimer's disease (AD), with additional features consistent with behavioral variant frontotemporal dementia. Structural magnetic resonance imaging revealed atrophy in bilateral frontal and parietal cortices and hippocampi on visual inspection and left frontal pole and bilateral anterior temporal encephalomalacia, suspected to be due to head trauma. Consistent with the diagnosis of Alzheimer's pathology, positron emission tomography (PET) with Pittsburgh compound B suggested the presence of beta-amyloid. Fluorodeoxyglucose PET demonstrated hypometabolism in bilateral frontal and temporoparietal cortices. Voxel-based morphometry showed atrophy predominant in ventral frontal regions (bilateral orbitofrontal cortex, pregenual anterior cingulate/medial superior frontal gyrus), bilateral mid cingulate, bilateral lateral temporal cortex, and posterior insula. Bilateral caudate, thalamus, hippocampi, and cerebellum were prominently atrophied. Unexpectedly, a pathologic hexanucleotide repeat expansion in C9ORF72 was identified in this patient. This report underscores the clinical variability in C9ORF72 expansion carriers and the need to consider mixed pathologies, particularly when imaging studies are inconsistent with a single syndrome or pathology.


Assuntos
Doença de Alzheimer , Encéfalo/patologia , Demência Frontotemporal , Mutação/genética , Proteínas/genética , Doença de Alzheimer/complicações , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Compostos de Anilina/farmacocinética , Apolipoproteínas E/genética , Encéfalo/diagnóstico por imagem , Proteína C9orf72 , Isótopos de Carbono/farmacocinética , Emoções , Fluordesoxiglucose F18/farmacocinética , Demência Frontotemporal/complicações , Demência Frontotemporal/diagnóstico , Demência Frontotemporal/genética , Humanos , Imageamento por Ressonância Magnética , Masculino , Memória , Pessoa de Meia-Idade , Testes Neuropsicológicos , Tomografia por Emissão de Pósitrons , Comportamento Social , Tiazóis/farmacocinética , Aprendizagem Verbal
12.
J Geriatr Psychiatry Neurol ; 28(2): 99-107, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25342578

RESUMO

BACKGROUND: Several clinical studies point to a high prevalence of psychotic symptoms in frontotemporal dementia associated with C9ORF72 mutations, but clinicopathological studies addressing the association between C9ORF72 mutations and delusions are lacking. METHOD: Seventeen patients with pathologically proven frontotemporal lobar degeneration (FTLD) associated with C9ORF72 mutations were identified from Neurodegenerative Disease Brain Bank. Of the 17 cases with C9ORF72 mutation, 4 exhibited well-defined delusions. The clinical history, neurological examination, neuropsychological testing, neuroimaging analysis, and postmortem assessment of the patients with delusions were evaluated and compared with the other cases. RESULT: The content of the delusions was mixed including persecution, infidelity, and grandiosity. All cases showed parkinsonism; voxel-based morphometry analysis showed greater precuneus atrophy in patients with delusions than those without delusions. All 4 had unclassifiable FTLD with TAR DNA-binding protein inclusions, with characteristics of both type A and type B. Three cases had additional τ pathology and another had α-synuclein pathology. CONCLUSION: C9ORF72 carriers with well-defined delusions likely associated with additional pathologies and parietal atrophy in neuroimaging. Patients presenting with middle-aged onset of delusions should be screened for C9ORF72 mutations, especially if family history and parkinsonism are present.


Assuntos
Delusões/genética , Delusões/psicologia , Demência Frontotemporal/genética , Demência Frontotemporal/psicologia , Mutação/genética , Fases de Leitura Aberta/genética , Lobo Parietal/patologia , Adulto , Idoso , Atrofia/patologia , Autopsia , Proteínas de Ligação a DNA/metabolismo , Delusões/complicações , Delusões/patologia , Demência Frontotemporal/complicações , Demência Frontotemporal/patologia , Degeneração Lobar Frontotemporal/complicações , Degeneração Lobar Frontotemporal/diagnóstico , Degeneração Lobar Frontotemporal/patologia , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Neuroimagem , Exame Neurológico , Testes Neuropsicológicos , Transtornos Parkinsonianos/complicações , Transtornos Parkinsonianos/diagnóstico , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
13.
Brain ; 137(Pt 11): 3047-60, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25273996

RESUMO

Hexanucleotide repeat expansion in C9orf72 represents the most common genetic cause of familial and sporadic behavioural variant frontotemporal dementia. Previous studies show that some C9orf72 carriers with behavioural variant frontotemporal dementia exhibit distinctive atrophy patterns whereas others show mild or undetectable atrophy despite severe behavioural impairment. To explore this observation, we examined intrinsic connectivity network integrity in patients with or without the C9orf72 expansion. We studied 28 patients with behavioural variant frontotemporal dementia, including 14 C9orf72 mutation carriers (age 58.3 ± 7.7 years, four females) and 14 non-carriers (age 60.8 ± 6.9 years, four females), and 14 age- and sex-matched healthy controls. Both patient groups included five patients with comorbid motor neuron disease. Neuropsychological data, structural brain magnetic resonance imaging, and task-free functional magnetic resonance imaging were obtained. Voxel-based morphometry delineated atrophy patterns, and seed-based intrinsic connectivity analyses enabled group comparisons of the salience, sensorimotor, and default mode networks. Single-patient analyses were used to explore network imaging as a potential biomarker. Despite contrasting atrophy patterns in C9orf72 carriers versus non-carriers, patient groups showed topographically similar connectivity reductions in the salience and sensorimotor networks. Patients without C9orf72 expansions exhibited increases in default mode network connectivity compared to controls and mutation carriers. Across all patients, behavioural symptom severity correlated with diminished salience network connectivity and heightened default mode network connectivity. In C9orf72 carriers, salience network connectivity reduction correlated with atrophy in the left medial pulvinar thalamic nucleus, and this region further showed diminished connectivity with key salience network hubs. Single-patient analyses revealed salience network disruption and default mode network connectivity enhancement in C9orf72 carriers with early-stage or slowly progressive symptoms. The findings suggest that patients with behavioural variant frontotemporal dementia with or without the C9orf72 expansion show convergent large-scale network breakdowns despite distinctive atrophy patterns. Medial pulvinar degeneration may contribute to the behavioural variant frontotemporal dementia syndrome in C9orf72 carriers by disrupting salience network connectivity. Task-free functional magnetic resonance imaging shows promise in detecting early-stage disease in C9orf72 carriers and may provide a unifying biomarker across diverse anatomical variants.


Assuntos
Demência Frontotemporal , Rede Nervosa/fisiopatologia , Proteínas/genética , Pulvinar/fisiopatologia , Idoso , Atrofia/patologia , Atrofia/fisiopatologia , Biomarcadores , Proteína C9orf72 , Expansão das Repetições de DNA/genética , Feminino , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Demência Frontotemporal/fisiopatologia , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/patologia , Pulvinar/patologia
15.
Neurology ; 79(10): 1002-11, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22875087

RESUMO

OBJECTIVE: To describe the phenotype of patients with C9FTD/ALS (C9ORF72) hexanucleotide repeat expansion. METHODS: A total of 648 patients with frontotemporal dementia (FTD)-related clinical diagnoses and Alzheimer disease (AD) dementia were tested for C9ORF72 expansion and 31 carried expanded repeats (C9+). Clinical and neuroimaging data were compared between C9+ (15 behavioral variant FTD [bvFTD], 11 FTD-motor neuron disease [MND], 5 amyotrophic lateral sclerosis [ALS]) and sporadic noncarriers (48 bvFTD, 19 FTD-MND, 6 ALS). RESULTS: All C9+ patients displayed clinical syndromes of bvFTD, ALS, or FTD-MND. At first evaluation, C9+ bvFTD patients had more delusions and greater impairment of working memory, but milder eating dysregulation compared to bvFTD noncarriers. C9+FTD-MND patients had a trend for longer survival and had an earlier age at onset than FTD-MND noncarriers. Voxel-based morphometry demonstrated more thalamic atrophy in FTD and FTD-MND carriers than in noncarriers. CONCLUSIONS: Patients with the C9ORF72 hexanucleotide repeat expansion develop bvFTD, ALS, or FTD-MND with similar clinical and imaging features to sporadic cases. Other FTD spectrum diagnoses and AD dementia appear rare or absent among C9+ individuals. Longer survival in C9+ FTD-MND suggests slower disease progression and thalamic atrophy represents a novel and unexpected feature.


Assuntos
Esclerose Lateral Amiotrófica/genética , Encéfalo/patologia , Demência Frontotemporal/genética , Proteínas/genética , Adulto , Idade de Início , Idoso , Esclerose Lateral Amiotrófica/patologia , Atrofia/genética , Atrofia/patologia , Proteína C9orf72 , Expansão das Repetições de DNA , Feminino , Demência Frontotemporal/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Neuroimagem , Testes Neuropsicológicos
16.
Neuron ; 64(3): 320-7, 2009 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19914181

RESUMO

Delta-catenin is a brain-specific member of the adherens junction complex that localizes to the postsynaptic and dendritic compartments. This protein is likely critical for normal cognitive function; its hemizygous loss is linked to the severe mental retardation syndrome Cri-du-Chat and it directly interacts with presenilin-1 (PS1), the protein most frequently mutated in familial Alzheimer's disease. Here we examine dendritic structure and cortical function in vivo in mice lacking delta-catenin. We find that in cerebral cortex of 5-week-old mice, dendritic complexity, spine density, and cortical responsiveness are similar between mutant and littermate controls; thereafter, mutant mice experience progressive dendritic retraction, a reduction in spine density and stability, and concomitant reductions in cortical responsiveness. Our results indicate that delta-catenin regulates the maintenance of dendrites and dendritic spines in mature cortex but does not appear to be necessary for the initial establishment of these structures during development.


Assuntos
Moléculas de Adesão Celular/metabolismo , Córtex Cerebral/fisiologia , Dendritos/fisiologia , Neurônios/fisiologia , Fosfoproteínas/metabolismo , Envelhecimento , Animais , Cateninas , Moléculas de Adesão Celular/genética , Tamanho Celular , Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Espinhas Dendríticas/fisiologia , Estimulação Elétrica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Cinética , Camundongos , Camundongos Transgênicos , Microeletrodos , Mutação , Neurônios/citologia , Fosfoproteínas/genética , Células Piramidais/citologia , Células Piramidais/fisiologia , Córtex Visual/citologia , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/fisiologia , delta Catenina
17.
Nat Neurosci ; 12(2): 116-8, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19151711

RESUMO

Can dendrites grow in mature cortex? We used chronic in vivo imaging to follow pyramidal neurons before and after cortical deletion of the Pten tumor suppressor gene in mature mice. We found that Pten/mTOR signaling uniquely regulates the growth of layer 2/3 apical dendrites; no effects of gene deletion were observed on basal dendrites of these pyramidal neurons or along layer 5 apical dendrites.


Assuntos
Proteínas de Transporte/metabolismo , Córtex Cerebral/citologia , Dendritos/fisiologia , PTEN Fosfo-Hidrolase/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Células Piramidais/fisiologia , Fatores Etários , Animais , Antibióticos Antineoplásicos/farmacologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , PTEN Fosfo-Hidrolase/metabolismo , Células Piramidais/ultraestrutura , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR
18.
Arch Biochem Biophys ; 442(1): 140-8, 2005 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16139238

RESUMO

Nitroxyl (HNO) was found to inhibit glycolysis in the yeast Saccharomyces cerevisiae. The toxicity of HNO in yeast positively correlated with the dependence of yeast on glycolysis for cellular energy. HNO was found to potently inhibit the crucial glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH), an effect which is likely to be responsible for the observed inhibition of glycolysis in whole cell preparations. It is proposed that GAPDH inhibition occurs through reaction of HNO with the active site thiolate residue of GAPDH. Significantly, levels of HNO that inhibit GAPDH do not alter the levels or redox status of intracellular glutathione (GSH), indicating that HNO has thiol selectivity. The ability of HNO to inhibit GAPDH in an intracellular environment that contains relatively large concentrations of GSH is an important aspect of HNO pharmacology and possibly, physiology.


Assuntos
Inibidores Enzimáticos/farmacologia , Gliceraldeído-3-Fosfato Desidrogenases/antagonistas & inibidores , Glicólise/efeitos dos fármacos , Óxidos de Nitrogênio/farmacologia , Sítios de Ligação , Catálise , Células Cultivadas , Glutationa/antagonistas & inibidores , Glutationa/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Óxidos de Nitrogênio/metabolismo , Óxidos de Nitrogênio/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA