Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mBio ; 10(6)2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719183

RESUMO

Interferon gamma (IFN-γ) restricts the intracellular replication of many pathogens, but the mechanism by which IFN-γ confers cell-intrinsic pathogen resistance remains unclear. For example, intracellular replication of the bacterial pathogen Legionella pneumophila in macrophages is potently curtailed by IFN-γ. However, consistent with prior studies, no individual genetic deficiency that we tested completely abolished IFN-γ-mediated control. Intriguingly, we observed that the glycolysis inhibitor 2-deoxyglucose (2DG) partially rescued L. pneumophila replication in IFN-γ-treated macrophages. 2DG inhibits glycolysis and triggers the unfolded protein response, but unexpectedly, it appears these effects are not responsible for perturbing the antimicrobial activity of IFN-γ. Instead, we found that 2DG rescues bacterial replication by inhibiting the expression of two key antimicrobial factors, inducible nitric oxide synthase (iNOS) and immune-responsive gene 1 (IRG1). Using immortalized and primary macrophages deficient in iNOS and IRG1, we confirmed that loss of both iNOS and IRG1, but not individual deficiency in either gene, partially reduced IFN-γ-mediated restriction of L. pneumophila Further, using a combinatorial CRISPR/Cas9 mutagenesis approach, we found that mutation of iNOS and IRG1 in combination with four other genes (CASP11, IRGM1, IRGM3, and NOX2) resulted in a total loss of L. pneumophila restriction by IFN-γ in primary bone marrow macrophages. Our study defines a complete set of cell-intrinsic factors required for IFN-γ-mediated restriction of an intracellular bacterial pathogen and highlights the combinatorial strategy used by hosts to block bacterial replication in macrophages.IMPORTANCELegionella pneumophila is one example among many species of pathogenic bacteria that replicate within mammalian macrophages during infection. The immune signaling factor interferon gamma (IFN-γ) blocks L. pneumophila replication in macrophages and is an essential component of the immune response to L. pneumophila and other intracellular pathogens. However, to date, no study has identified the exact molecular factors induced by IFN-γ that are required for its activity. We generated macrophages lacking different combinations of IFN-γ-induced genes in an attempt to find a genetic background in which there is a complete loss of IFN-γ-mediated restriction of L. pneumophila We identified six genes that comprise the totality of the IFN-γ-dependent restriction of L. pneumophila replication in macrophages. Our results clarify the molecular basis underlying the potent effects of IFN-γ and highlight how redundancy downstream of IFN-γ is key to prevent exploitation of macrophages by pathogens.


Assuntos
Interações Hospedeiro-Patógeno , Hidroliases/metabolismo , Interferon gama/metabolismo , Legionella pneumophila/fisiologia , Doença dos Legionários/metabolismo , Doença dos Legionários/microbiologia , Óxido Nítrico Sintase Tipo II/metabolismo , Animais , Desoxiglucose/metabolismo , Técnicas de Silenciamento de Genes , Hidroliases/genética , Doença dos Legionários/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Óxido Nítrico Sintase Tipo II/genética , Resposta a Proteínas não Dobradas
2.
J Bacteriol ; 200(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29784886

RESUMO

Toll-like receptor (TLR) stimulation induces a pronounced shift to increased glycolytic metabolism in mammalian macrophages. We observed that bone marrow-derived macrophages (BMMs) increase glycolysis in response to infection with Legionella pneumophila, but the role of host macrophage glycolysis in terms of intracellular L. pneumophila replication is not currently understood. Treatment with 2-deoxyglucose (2DG) blocks L. pneumophila replication in mammalian macrophages but has no effect on bacteria grown in broth. In addition, we found that 2DG had no effect on bacteria grown in amoebae. We used a serial enrichment strategy to reveal that the effect of 2DG on L. pneumophila in macrophages requires the L. pneumophila hexose-phosphate transporter UhpC. Experiments with UhpC-deficient L. pneumophila revealed that mutant bacteria are also resistant to growth inhibition following treatment with phosphorylated 2DG in broth, suggesting that the inhibitory effect of 2DG on L. pneumophila in mammalian cells requires 2DG phosphorylation. UhpC-deficient L. pneumophila replicates without a growth defect in BMMs and protozoan host cells and also replicates without a growth defect in BMMs treated with 2DG. Our data indicate that neither TLR signaling-dependent increased macrophage glycolysis nor inhibition of macrophage glycolysis has a substantial effect on intracellular L. pneumophila replication. These results are consistent with the view that L. pneumophila can employ diverse metabolic strategies to exploit its host cells.IMPORTANCE We explored the relationship between macrophage glycolysis and replication of an intracellular bacterial pathogen, Legionella pneumophila Previous studies demonstrated that a glycolysis inhibitor, 2-deoxyglucose (2DG), blocks replication of L. pneumophila during infection of macrophages, leading to speculation that L. pneumophila may exploit macrophage glycolysis. We isolated L. pneumophila mutants resistant to the inhibitory effect of 2DG in macrophages, identifying a L. pneumophila hexose-phosphate transporter, UhpC, that is required for bacterial sensitivity to 2DG during infection. Our results reveal how a bacterial transporter mediates the direct antimicrobial effect of a toxic metabolite. Moreover, our results indicate that neither induction nor impairment of host glycolysis inhibits intracellular replication of L. pneumophila, which is consistent with a view of L. pneumophila as a metabolic generalist.


Assuntos
Proteínas de Bactérias/genética , Glucofosfatos/farmacologia , Legionella pneumophila/efeitos dos fármacos , Legionella pneumophila/metabolismo , Macrófagos/microbiologia , Proteínas de Membrana Transportadoras/genética , Animais , Glucose/química , Glicólise , Interações entre Hospedeiro e Microrganismos , Legionella pneumophila/genética , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação
3.
Cell Death Discov ; 3: 17070, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29147575

RESUMO

Although much insight has been gained into the mechanisms by which activation of the inflammasome can trigger pyroptosis in mammalian cells, the precise kinetics of the end stages of pyroptosis have not been well characterized. Using time-lapse fluorescent imaging to analyze the kinetics of pyroptosis in individual murine macrophages, we observed distinct stages of cell death and cell lysis. Our data demonstrate that cell membrane permeability resulting from gasdermin D pore formation is coincident with the cessation of cell movement, loss of mitochondrial activity, and cell swelling, events that can be uncoupled from cell lysis. We propose a model of pyroptosis in which cell death can occur independently of cell lysis. The uncoupling of cell death from cell lysis may allow for better control of cytosolic contents upon activation of the inflammasome.

4.
ACS Nano ; 10(12): 10652-10660, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27636738

RESUMO

Autoantibodies are a hallmark of autoimmune diseases such as lupus and have the potential to be used as biomarkers for diverse diseases, including immunodeficiency, infectious disease, and cancer. More precise detection of antibodies to specific targets is needed to improve diagnosis of such diseases. Here, we report the development of reusable peptide microarrays, based on giant magnetoresistive (GMR) nanosensors optimized for sensitively detecting magnetic nanoparticle labels, for the detection of antibodies with a resolution of a single post-translationally modified amino acid. We have also developed a chemical regeneration scheme to perform multiplex assays with a high level of reproducibility, resulting in greatly reduced experimental costs. In addition, we show that peptides synthesized directly on the nanosensors are approximately two times more sensitive than directly spotted peptides. Reusable peptide nanosensor microarrays enable precise detection of autoantibodies with high resolution and sensitivity and show promise for investigating antibody-mediated immune responses to autoantigens, vaccines, and pathogen-derived antigens as well as other fundamental peptide-protein interactions.


Assuntos
Autoanticorpos , Peptídeos , Análise Serial de Proteínas , Processamento de Proteína Pós-Traducional , Autoantígenos , Reprodutibilidade dos Testes
5.
Sci Rep ; 6: 27623, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27279139

RESUMO

High titer, class-switched autoantibodies are a hallmark of systemic lupus erythematosus (SLE). Dysregulation of the interferon (IFN) pathway is observed in individuals with active SLE, although the association of specific autoantibodies with chemokine score, a combined measurement of three IFN-regulated chemokines, is not known. To identify autoantibodies associated with chemokine score, we developed giant magnetoresistive (GMR) biosensor microarrays, which allow the parallel measurement of multiple serum antibodies to autoantigens and peptides. We used the microarrays to analyze serum samples from SLE patients and found individuals with high chemokine scores had significantly greater reactivity to 13 autoantigens than individuals with low chemokine scores. Our findings demonstrate that multiple autoantibodies, including antibodies to U1-70K and modified histone H2B tails, are associated with IFN dysregulation in SLE. Further, they show the microarrays are capable of identifying autoantibodies associated with relevant clinical manifestations of SLE, with potential for use as biomarkers in clinical practice.


Assuntos
Autoanticorpos/sangue , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Interferons/imunologia , Lúpus Eritematoso Sistêmico/sangue , Técnicas de Diagnóstico Molecular/métodos , Análise Serial de Proteínas/métodos , Autoanticorpos/imunologia , Estudos de Casos e Controles , Humanos , Ribonucleoproteína Nuclear Pequena U1/imunologia , Sensibilidade e Especificidade
6.
J Allergy Clin Immunol ; 137(1): 204-213.e3, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26365387

RESUMO

BACKGROUND: Anti-cytokine autoantibodies (ACAAs) are pathogenic in a handful of rare immunodeficiencies. However, the prevalence and significance of other ACAAs across immunodeficiencies have not yet been described. OBJECTIVE: We profiled ACAAs in a diverse cohort of serum samples from patients with immunodeficiency and assessed the sensitivity and specificity of protein microarrays for ACAA identification and discovery. METHODS: Highly multiplexed protein microarrays were designed and fabricated. Blinded serum samples from a cohort of 58 immunodeficiency patients and healthy control subjects were used to probe microarrays. Unsupervised hierarchical clustering was used to identify clusters of reactivity, and after unblinding, significance analysis of microarrays was used to identify disease-specific autoantibodies. A bead-based assay was used to validate protein microarray results. Blocking activity of serum containing ACAAs was measured in vitro. RESULTS: Protein microarrays were highly sensitive and specific for the detection of ACAAs in patients with autoimmune polyendocrine syndrome type I and pulmonary alveolar proteinosis, detecting ACAA levels consistent with those reported in the published literature. Protein microarray results were validated by using an independent bead-based assay. To confirm the functional significance of these ACAAs, we tested and confirmed the blocking activity of select ACAAs in vitro. CONCLUSION: Protein microarrays are a powerful tool for ACAA detection and discovery, and they hold promise as a diagnostic for the evaluation and monitoring of clinical immunodeficiency.


Assuntos
Autoanticorpos/sangue , Citocinas/imunologia , Síndromes de Imunodeficiência/imunologia , Humanos , Síndromes de Imunodeficiência/sangue , Análise Serial de Proteínas
7.
Autoimmunity ; 48(8): 513-23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26333287

RESUMO

The mechanisms underlying development of ribonucleoprotein (RNP) autoantibodies are unclear. The U1-70K protein is the predominant target of RNP autoantibodies, and the RNA binding domain has been shown to be the immunodominant autoantigenic region of U1-70K, although the specific epitopes are not known. To precisely map U1-70K epitopes, we developed silicon-based peptide microarrays with >5700 features, corresponding to 843 unique peptides derived from the U1-70K protein. The microarrays feature overlapping peptides, with single-amino acid resolution in length and location, spanning amino acids 110-170 within the U1-70K RNA binding domain. We evaluated the serum IgG of a cohort of patients with systemic lupus erythematosus (SLE; n = 26) using the microarrays, and identified multiple reactive epitopes, including peptides 116-121 and 143-148. Indirect peptide ELISA analysis of the sera of patients with SLE (n = 88) revealed that ∼14% of patients had serum IgG reactivity to 116-121, while reactivity to 143-148 appeared to be limited to a single patient. SLE patients with serum reactivity to 116-121 had significantly lower SLE Disease Activity Index (SLEDAI) scores at the time of sampling, compared to non-reactive patients. Minimal reactivity to the peptides was observed in the sera of healthy controls (n = 92). Competitive ELISA showed antibodies to 116-121 bind a common epitope in U1-70K (68-72) and the matrix protein M1 of human influenza B viruses. Institutional Review Boards approved this study. Knowledge of the precise epitopes of U1-70K autoantibodies may provide insight into the mechanisms of development of anti-RNP, identify potential clinical biomarkers and inform ongoing clinical trails of peptide-based therapeutics.


Assuntos
Autoanticorpos/química , Autoantígenos/imunologia , Epitopos/química , Imunoglobulina G/química , Lúpus Eritematoso Sistêmico/imunologia , Ribonucleoproteína Nuclear Pequena U1/imunologia , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/imunologia , Autoanticorpos/metabolismo , Autoantígenos/metabolismo , Estudos de Casos e Controles , Mapeamento de Epitopos , Epitopos/imunologia , Epitopos/metabolismo , Expressão Gênica , Humanos , Imunoglobulina G/metabolismo , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/patologia , Dados de Sequência Molecular , Mapeamento de Peptídeos , Análise Serial de Proteínas , Ligação Proteica , Estrutura Terciária de Proteína , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Proteínas da Matriz Viral/química
8.
Arthritis Res Ther ; 17: 162, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26081107

RESUMO

INTRODUCTION: Pediatric systemic lupus erythematosus (pSLE) patients often initially present with more active and severe disease than adults, including a higher frequency of lupus nephritis. Specific autoantibodies, including anti-C1q, anti-DNA and anti-alpha-actinin, have been associated with kidney involvement in SLE, and DNA antibodies are capable of initiating early-stage lupus nephritis in severe combined immunodeficiency (SCID) mice. Over 100 different autoantibodies have been described in SLE patients, highlighting the need for comprehensive autoantibody profiling. Knowledge of the antibodies associated with pSLE and proliferative nephritis will increase the understanding of SLE pathogenesis, and may aid in monitoring patients for renal flare. METHODS: We used autoantigen microarrays composed of 140 recombinant or purified antigens to compare the serum autoantibody profiles of new-onset pSLE patients (n = 45) to healthy controls (n = 17). We also compared pSLE patients with biopsy-confirmed class III or IV proliferative nephritis (n = 23) and without significant renal involvement (n = 18). We performed ELISA with selected autoantigens to validate the microarray findings. We created a multiple logistic regression model, based on the ELISA and clinical information, to predict whether a patient had proliferative nephritis, and used a validation cohort (n = 23) and longitudinal samples (88 patient visits) to test its accuracy. RESULTS: Fifty autoantibodies were at significantly higher levels in the sera of pSLE patients compared to healthy controls, including anti-B cell-activating factor (BAFF). High levels of anti-BAFF were associated with active disease. Thirteen serum autoantibodies were present at significantly higher levels in pSLE patients with proliferative nephritis than those without, and we confirmed five autoantigens (dsDNA, C1q, collagens IV and X and aggrecan) by ELISA. Our model, based on ELISA measurements and clinical variables, correctly identified patients with proliferative nephritis with 91 % accuracy. CONCLUSIONS: Autoantigen microarrays are an ideal platform for identifying autoantibodies associated with both pSLE and specific clinical manifestations of pSLE. Using multiple regression analysis to integrate autoantibody and clinical data permits accurate prediction of clinical manifestations with complex etiologies in pSLE.


Assuntos
Autoanticorpos/sangue , Autoantígenos/sangue , Lúpus Eritematoso Sistêmico/sangue , Nefrite Lúpica/sangue , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Adolescente , Autoanticorpos/genética , Autoantígenos/genética , Criança , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Estudos Longitudinais , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/genética , Nefrite Lúpica/diagnóstico , Nefrite Lúpica/genética , Masculino
9.
Immunity ; 41(5): 685-93, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25517611

RESUMO

Macrophages are a diverse population of phagocytic cells that reside in tissues throughout the body. At sites of infection, macrophages encounter and engulf invading microbes. Accordingly, macrophages possess specialized effector functions to kill or coordinate the elimination of their prey. Nevertheless, many intracellular bacterial pathogens preferentially replicate inside macrophages. Here we consider explanations for what we call "the macrophage paradox:" why do so many pathogenic bacteria replicate in the very cells equipped to destroy them? We ask whether replication in macrophages is an unavoidable fate that essentially defines a key requirement to be a pathogen. Conversely, we consider whether fundamental aspects of macrophage biology provide unique cellular or metabolic environments that pathogens can exploit. We conclude that resolution of the macrophage paradox requires acknowledgment of the richness and complexity of macrophages as a replicative niche.


Assuntos
Bactérias/crescimento & desenvolvimento , Infecções Bacterianas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Humanos , Fagocitose
10.
J Autoimmun ; 50: 87-98, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24508410

RESUMO

Lupus is a systemic autoimmune disease characterized by anti-nuclear antibodies in humans and genetically susceptible NZB/W mice that can cause immune complex glomerulonephritis. T cells contribute to lupus pathogenesis by secreting pro-inflammatory cytokines such as IL-17, and by interacting with B cells and secreting helper factors such as IL-21 that promote production of IgG autoantibodies. In the current study, we determined whether purified NKT cells or far more numerous conventional non-NKT cells in the spleen of NZB/W female mice secrete IL-17 and/or IL-21 after TCR activation in vitro, and provide help for spontaneous IgG autoantibody production by purified splenic CD19(+) B cells. Whereas invariant NKT cells secreted large amounts of IL-17 and IL-21, and helped B cells, non-NKT cells did not. The subset of IL-17 secreting NZB/W NKT cells expressed the Ly108(lo)CD4(-)NK1.1(-) phenotype, whereas the IL-21 secreting subset expressed the Ly108(hi)CD4(+)NK1.1(-) phenotype and helped B cells secrete a variety of IgG anti-nuclear antibodies. α-galactocylceramide enhanced the helper activity of NZB/W and B6.Sle1b NKT cells for IgG autoantibody secretion by syngeneic B cells. In conclusion, different subsets of iNKT cells from mice with genetic susceptibility to lupus can contribute to pathogenesis by secreting pro-inflammatory cytokines and helping autoantibody production.


Assuntos
Anticorpos Antinucleares/biossíntese , Antígenos Ly/imunologia , Interleucina-17/imunologia , Interleucinas/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Células T Matadoras Naturais/imunologia , Animais , Antígenos CD19/genética , Antígenos CD19/imunologia , Antígenos Ly/genética , Linhagem da Célula/imunologia , Feminino , Galactosilceramidas/farmacologia , Expressão Gênica , Predisposição Genética para Doença , Humanos , Imunoglobulina G/biossíntese , Interleucina-17/metabolismo , Interleucinas/metabolismo , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/patologia , Camundongos , Camundongos Endogâmicos NZB , Células T Matadoras Naturais/patologia , Transdução de Sinais , Baço/imunologia , Baço/patologia
12.
J Clin Invest ; 123(12): 5135-45, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24270423

RESUMO

Autoantibodies against cytokines, chemokines, and growth factors inhibit normal immunity and are implicated in inflammatory autoimmune disease and diseases of immune deficiency. In an effort to evaluate serum from autoimmune and immunodeficient patients for Abs against cytokines, chemokines, and growth factors in a high-throughput and unbiased manner, we constructed a multiplex protein microarray for detection of serum factor-binding Abs and used the microarray to detect autoantibody targets in SLE. We designed a nitrocellulose-surface microarray containing human cytokines, chemokines, and other circulating proteins and demonstrated that the array permitted specific detection of serum factor-binding probes. We used the arrays to detect previously described autoantibodies against cytokines in samples from individuals with autoimmune polyendocrine syndrome type 1 and chronic mycobacterial infection. Serum profiling from individuals with SLE revealed that among several targets, elevated IgG autoantibody reactivity to B cell-activating factor (BAFF) was associated with SLE compared with control samples. BAFF reactivity correlated with the severity of disease-associated features, including IFN-α-driven SLE pathology. Our results showed that serum factor protein microarrays facilitate detection of autoantibody reactivity to serum factors in human samples and that BAFF-reactive autoantibodies may be associated with an elevated inflammatory disease state within the spectrum of SLE.


Assuntos
Autoanticorpos/imunologia , Autoantígenos/imunologia , Fator Ativador de Células B/imunologia , Imunoglobulina G/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Análise Serial de Proteínas , Animais , Especificidade de Anticorpos , Autoanticorpos/sangue , Citocinas/imunologia , Humanos , Imunoglobulina G/sangue , Inflamação , Interferon-alfa/imunologia , Camundongos , Infecções por Mycobacterium/sangue , Infecções por Mycobacterium/imunologia , Poliendocrinopatias Autoimunes/sangue , Poliendocrinopatias Autoimunes/imunologia , Proteínas Recombinantes/imunologia
13.
PLoS One ; 8(7): e71043, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23923050

RESUMO

High-throughput screening for interactions of peptides with a variety of antibody targets could greatly facilitate proteomic analysis for epitope mapping, enzyme profiling, drug discovery and biomarker identification. Peptide microarrays are suited for such undertaking because of their high-throughput capability. However, existing peptide microarrays lack the sensitivity needed for detecting low abundance proteins or low affinity peptide-protein interactions. This work presents a new peptide microarray platform constructed on nanostructured plasmonic gold substrates capable of metal enhanced NIR fluorescence enhancement (NIR-FE) by hundreds of folds for screening peptide-antibody interactions with ultrahigh sensitivity. Further, an integrated histone peptide and whole antigen array is developed on the same plasmonic gold chip for profiling human antibodies in the sera of systemic lupus erythematosus (SLE) patients, revealing that collectively a panel of biomarkers against unmodified and post-translationally modified histone peptides and several whole antigens allow more accurate differentiation of SLE patients from healthy individuals than profiling biomarkers against peptides or whole antigens alone.


Assuntos
Anticorpos/imunologia , Análise Serial de Proteínas , Proteômica , Anticorpos/sangue , Antígenos/imunologia , Análise por Conglomerados , Epitopos/imunologia , Humanos , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/imunologia , Peptídeos/imunologia , Análise Serial de Proteínas/instrumentação , Análise Serial de Proteínas/métodos , Ligação Proteica/imunologia , Proteômica/instrumentação , Proteômica/métodos
14.
PLoS One ; 8(5): e64555, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23734205

RESUMO

BACKGROUND: Existing methods to measure influenza vaccine immunogenicity prohibit detailed analysis of epitope determinants recognized by immunoglobulins. The development of highly multiplex proteomics platforms capable of capturing a high level of antibody binding information will enable researchers and clinicians to generate rapid and meaningful readouts of influenza-specific antibody reactivity. METHODS: We developed influenza hemagglutinin (HA) whole-protein and peptide microarrays and validated that the arrays allow detection of specific antibody reactivity across a broad dynamic range using commercially available antibodies targeted to linear and conformational HA epitopes. We derived serum from blood draws taken from 76 young and elderly subjects immediately before and 28±7 days post-vaccination with the 2008/2009 trivalent influenza vaccine and determined the antibody reactivity of these sera to influenza array antigens. RESULTS: Using linear regression and correcting for multiple hypothesis testing by the Benjamini and Hochberg method of permutations over 1000 resamplings, we identified antibody reactivity to influenza whole-protein and peptide array features that correlated significantly with age, H1N1, and B-strain post-vaccine titer as assessed through a standard microneutralization assay (p<0.05, q <0.2). Notably, we identified several peptide epitopes that were inversely correlated with regard to age and seasonal H1N1 and B-strain neutralization titer (p<0.05, q <0.2), implicating reactivity to these epitopes in age-related defects in response to H1N1 influenza. We also employed multivariate linear regression with cross-validation to build models based on age and pre-vaccine peptide reactivity that predicted vaccine-induced neutralization of seasonal H1N1 and H3N2 influenza strains with a high level of accuracy (84.7% and 74.0%, respectively). CONCLUSION: Our methods provide powerful tools for rapid and accurate measurement of broad antibody-based immune responses to influenza, and may be useful in measuring response to other vaccines and infectious agents.


Assuntos
Antígenos Virais/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , Antígenos Virais/metabolismo , Epitopos/imunologia , Epitopos/metabolismo , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Peptídeos/imunologia , Peptídeos/metabolismo , Análise Serial de Proteínas/métodos , Proteômica/métodos , Vacinação , Adulto Jovem
15.
Adv Physiol Educ ; 37(1): 70-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23471252

RESUMO

Most scientists agree that comprehension of primary scientific papers and communication of scientific concepts are two of the most important skills that we can teach, but few undergraduate biology courses make these explicit course goals. We designed an undergraduate neuroimmunology course that uses a writing-intensive format. Using a mixture of primary literature, writing assignments directed toward a layperson and scientist audience, and in-class discussions, we aimed to improve the ability of students to 1) comprehend primary scientific papers, 2) communicate science to a scientific audience, and 3) communicate science to a layperson audience. We offered the course for three consecutive years and evaluated its impact on student perception and confidence using a combination of pre- and postcourse survey questions and coded open-ended responses. Students showed gains in both the perception of their understanding of primary scientific papers and of their abilities to communicate science to scientific and layperson audiences. These results indicate that this unique format can teach both communication skills and basic science to undergraduate biology students. We urge others to adopt a similar format for undergraduate biology courses to teach process skills in addition to content, thus broadening and strengthening the impact of undergraduate courses.


Assuntos
Biologia/educação , Comunicação , Avaliação Educacional/métodos , Percepção , Leitura , Estudantes , Currículo/normas , Avaliação Educacional/normas , Feminino , Humanos , Masculino , Publicações Periódicas como Assunto/normas , Universidades/normas
16.
Nat Med ; 18(9): 1434-40, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22902875

RESUMO

We developed a new, silicon-based peptide array for a broad range of biological applications, including potential development as a real-time point-of-care platform. We used photolithography on silicon wafers to synthesize microarrays (Intel arrays) that contained every possible overlapping peptide within a linear protein sequence covering the N-terminal tail of human histone H2B. These arrays also included peptides with acetylated and methylated lysine residues, reflecting post-translational modifications of H2B. We defined minimum binding epitopes for commercial antibodies recognizing the modified and unmodified H2B peptides. We further found that this platform is suitable for the highly sensitive characterization of methyltransferases and kinase substrates. The Intel arrays also revealed specific H2B epitopes that are recognized by autoantibodies in individuals with systemic lupus erythematosus who have elevated disease severity. By combining emerging nonfluorescence-based detection methods with an underlying integrated circuit, we are now poised to create a truly transformative proteomics platform with applications in bioscience, drug development and clinical diagnostics.


Assuntos
Epitopos/genética , Histonas/genética , Análise em Microsséries/métodos , Peptídeos/genética , Mapeamento de Interação de Proteínas/métodos , Proteômica/instrumentação , Proteômica/métodos , Sequência de Aminoácidos , Sistemas Computacionais , Ensaio de Imunoadsorção Enzimática , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Dados de Sequência Molecular , Fosforilação , Fosfotransferases/genética , Fosfotransferases/metabolismo , Sistemas Automatizados de Assistência Junto ao Leito
17.
Nature ; 451(7182): 1076-81, 2008 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-18278032

RESUMO

Understanding the neuropathology of multiple sclerosis (MS) is essential for improved therapies. Therefore, identification of targets specific to pathological types of MS may have therapeutic benefits. Here we identify, by laser-capture microdissection and proteomics, proteins unique to three major types of MS lesions: acute plaque, chronic active plaque and chronic plaque. Comparative proteomic profiles identified tissue factor and protein C inhibitor within chronic active plaque samples, suggesting dysregulation of molecules associated with coagulation. In vivo administration of hirudin or recombinant activated protein C reduced disease severity in experimental autoimmune encephalomyelitis and suppressed Th1 and Th17 cytokines in astrocytes and immune cells. Administration of mutant forms of recombinant activated protein C showed that both its anticoagulant and its signalling functions were essential for optimal amelioration of experimental autoimmune encephalomyelitis. A proteomic approach illuminated potential therapeutic targets selective for specific pathological stages of MS and implicated participation of the coagulation cascade.


Assuntos
Perfilação da Expressão Gênica , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Proteômica , Adulto , Animais , Coagulação Sanguínea , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Esclerose Múltipla/classificação , Esclerose Múltipla/tratamento farmacológico , Proteína C/genética , Proteína C/metabolismo , Proteína C/farmacologia , Células Th1/imunologia , Células Th2/imunologia , Trombina/antagonistas & inibidores , Trombina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA