Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
Front Oncol ; 14: 1397008, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665952

RESUMO

For many cancer survivors, toxic side effects of treatment, lingering effects of the aftermath of disease and cancer recurrence adversely affect quality of life (QoL) and reduce healthspan. Data-driven approaches for quantifying and improving wellness in healthy individuals hold great promise for improving the lives of cancer survivors. The data-driven strategy will also guide personalized nutrition and exercise recommendations that may help prevent cancer recurrence and secondary malignancies in survivors.

2.
J Matern Fetal Neonatal Med ; 37(1): 2313364, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38342572

RESUMO

OBJECTIVE: There is uncertainty around the safety of SSRIs for treating depression during pregnancy. Nevertheless, the use of SSRIs has been gradually increasing, especially during the COVID-19 pandemic period. We aimed to (1) characterize maternal depression rate and use of SSRIs in a recent 10-year period, (2) address confounding by indication, as well as socioeconomic and environmental factors, and (3) evaluate associations of the timing of SSRI exposure in pregnancy with risk for preterm birth (PTB), low birthweight (LBW), and small for gestational age (SGA) infants among women with depression before pregnancy. METHODS: We conducted propensity score-adjusted regression to calculate odds ratios (ORs) of PTB, LBW, and SGA. We accounted for maternal/pregnancy characteristics, comorbidity, depression severity, time of delivery, social vulnerability, and rural residence. RESULTS: There were 50.3% and 40.3% increases in the prevalence rate of prenatal depression and prenatal SSRI prescription rate during the pandemic. We identified women with depression ≤180 days before pregnancy (n = 8406). Women with no SSRI order during pregnancy (n = 3760) constituted the unexposed group. The late SSRI exposure group consisted of women with an SSRI order after the first trimester (n = 3759). The early-only SSRI exposure group consisted of women with SSRI orders only in the first trimester (n = 887). The late SSRI exposure group had an increased risk of PTB of OR = 1.5 ([1.2,1.8]) and LBW of OR = 1.5 ([1.2,2.0]), relative to the unexposed group. Associations between late SSRI exposure and risk of PTB/LBW were similar among a subsample of patients who delivered during the pandemic. CONCLUSIONS: These findings suggest an association between PTB/LBW and SSRI exposure is dependent on exposure timing during pregnancy. Small for gestational age is not associated with SSRI exposure.


Assuntos
COVID-19 , Doenças do Recém-Nascido , Complicações na Gravidez , Nascimento Prematuro , Gravidez , Lactente , Recém-Nascido , Humanos , Feminino , Inibidores Seletivos de Recaptação de Serotonina/efeitos adversos , Nascimento Prematuro/epidemiologia , Nascimento Prematuro/etiologia , Pandemias , Complicações na Gravidez/epidemiologia , COVID-19/epidemiologia , Retardo do Crescimento Fetal/epidemiologia , Doenças do Recém-Nascido/epidemiologia
3.
J Allergy Clin Immunol ; 153(4): 954-968, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38295882

RESUMO

Studies of asthma and allergy are generating increasing volumes of omics data for analysis and interpretation. The National Institute of Allergy and Infectious Diseases (NIAID) assembled a workshop comprising investigators studying asthma and allergic diseases using omics approaches, omics investigators from outside the field, and NIAID medical and scientific officers to discuss the following areas in asthma and allergy research: genomics, epigenomics, transcriptomics, microbiomics, metabolomics, proteomics, lipidomics, integrative omics, systems biology, and causal inference. Current states of the art, present challenges, novel and emerging strategies, and priorities for progress were presented and discussed for each area. This workshop report summarizes the major points and conclusions from this NIAID workshop. As a group, the investigators underscored the imperatives for rigorous analytic frameworks, integration of different omics data types, cross-disciplinary interaction, strategies for overcoming current limitations, and the overarching goal to improve scientific understanding and care of asthma and allergic diseases.


Assuntos
Asma , Hipersensibilidade , Estados Unidos , Humanos , National Institute of Allergy and Infectious Diseases (U.S.) , Hipersensibilidade/genética , Asma/etiologia , Genômica , Proteômica , Metabolômica
4.
Nat Rev Genet ; 25(4): 286-302, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38093095

RESUMO

Modern health care faces several serious challenges, including an ageing population and its inherent burden of chronic diseases, rising costs and marginal quality metrics. By assessing and optimizing the health trajectory of each individual using a data-driven personalized approach that reflects their genetics, behaviour and environment, we can start to address these challenges. This assessment includes longitudinal phenome measures, such as the blood proteome and metabolome, gut microbiome composition and function, and lifestyle and behaviour through wearables and questionnaires. Here, we review ongoing large-scale genomics and longitudinal phenomics efforts and the powerful insights they provide into wellness. We describe our vision for the transformation of the current health care from disease-oriented to data-driven, wellness-oriented and personalized population health.


Assuntos
Genômica , Fenômica
6.
BMC Med ; 21(1): 349, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37679695

RESUMO

BACKGROUND: Placental dysfunction, a root cause of common syndromes affecting human pregnancy, such as preeclampsia (PE), fetal growth restriction (FGR), and spontaneous preterm delivery (sPTD), remains poorly defined. These common, yet clinically disparate obstetrical syndromes share similar placental histopathologic patterns, while individuals within each syndrome present distinct molecular changes, challenging our understanding and hindering our ability to prevent and treat these syndromes. METHODS: Using our extensive biobank, we identified women with severe PE (n = 75), FGR (n = 40), FGR with a hypertensive disorder (FGR + HDP; n = 33), sPTD (n = 72), and two uncomplicated control groups, term (n = 113), and preterm without PE, FGR, or sPTD (n = 16). We used placental biopsies for transcriptomics, proteomics, metabolomics data, and histological evaluation. After conventional pairwise comparison, we deployed an unbiased, AI-based similarity network fusion (SNF) to integrate the datatypes and identify omics-defined placental clusters. We used Bayesian model selection to compare the association between the histopathological features and disease conditions vs SNF clusters. RESULTS: Pairwise, disease-based comparisons exhibited relatively few differences, likely reflecting the heterogeneity of the clinical syndromes. Therefore, we deployed the unbiased, omics-based SNF method. Our analysis resulted in four distinct clusters, which were mostly dominated by a specific syndrome. Notably, the cluster dominated by early-onset PE exhibited strong placental dysfunction patterns, with weaker injury patterns in the cluster dominated by sPTD. The SNF-defined clusters exhibited better correlation with the histopathology than the predefined disease groups. CONCLUSIONS: Our results demonstrate that integrated omics-based SNF distinctively reclassifies placental dysfunction patterns underlying the common obstetrical syndromes, improves our understanding of the pathological processes, and could promote a search for more personalized interventions.


Assuntos
Placenta , Pré-Eclâmpsia , Gravidez , Recém-Nascido , Feminino , Humanos , Teorema de Bayes , Multiômica , Síndrome , Biópsia , Retardo do Crescimento Fetal
7.
Lancet Digit Health ; 5(9): e594-e606, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37537121

RESUMO

BACKGROUND: COVID-19 in pregnant people increases the risk for poor maternal-fetal outcomes. However, COVID-19 vaccination hesitancy remains due to concerns over the vaccine's potential effects on maternal-fetal outcomes. Here we examine the impact of COVID-19 vaccination and boosters on maternal SARS-CoV-2 infections and birth outcomes. METHODS: This was a retrospective multicentre cohort study on the impact of COVID-19 vaccination on maternal-fetal outcomes for people who delivered (n=106 428) at Providence St Joseph Health across seven western US states from Jan 26, 2021 to Oct 26, 2022. Cohorts were defined by vaccination status at delivery: vaccinated (n=35 926; two or more doses of mRNA-1273 Moderna or BNT162b2 Pfizer-BioNTech), unvaccinated (n=55 878), unvaccinated propensity score matched (n=16 771), boosted (n=10 927; three or more doses), vaccinated unboosted (n=13 243; two doses only), and vaccinated unboosted with propensity score matching (n=4414). We built supervised machine learning classification models, which we used to determine which people were more likely to be vaccinated or boosted at delivery. The primary outcome was maternal SARS-CoV-2 infection. COVID-19 vaccination status at delivery, COVID-19-related health care, preterm birth, stillbirth, and very low birthweight were evaluated as secondary outcomes. FINDINGS: Vaccinated people were more likely to conceive later in the pandemic, have commercial insurance, be older, live in areas with lower household composition vulnerability, and have a higher BMI than unvaccinated people. Boosted people were more likely to have more days since receiving the second COVID-19 vaccine dose, conceive earlier in the pandemic, have commercial insurance, be older, and live in areas with lower household composition vulnerability than vaccinated unboosted people. Vaccinated pregnant people had lower rates of COVID-19 during pregnancy (4·0%) compared with unvaccinated matched people (5·3%; p<0·0001). COVID-19 rates were even lower in boosted people (3·2%) compared with vaccinated unboosted matched people (5·6%; p<0·0001). Vaccinated people were also less likely to have a preterm birth (7·9%; p<0·0001), stillbirth (0·3%; p<0·0002), or very low birthweight neonate (1·0%; p<0·0001) compared with unvaccinated matched people (preterm birth 9·4%; stillbirth 0·6%; very low birthweight 1·5%). Boosted people were less likely to have a stillbirth (0·3%; p<0·025) and have no differences in rates of preterm birth (7·6%; p=0·090) or very low birthweight neonates (0·8%; p=0·092) compared with vaccinated unboosted matched people (stillbirth 0·5%; preterm birth 8·4%; very low birthweight 1·1%). INTERPRETATION: COVID-19 vaccination protects against adverse maternal-fetal outcomes, with booster doses conferring additional protection. Pregnant people should be high priority for vaccination and stay up to date with their COVID-19 vaccination schedule. FUNDING: National Institute for Child Health & Human Development and the William O and K Carole Ellison Foundation.


Assuntos
COVID-19 , Nascimento Prematuro , Recém-Nascido , Criança , Feminino , Gravidez , Humanos , Vacina BNT162 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Estudos de Coortes , Nascimento Prematuro/epidemiologia , Estudos Retrospectivos , SARS-CoV-2 , Natimorto/epidemiologia
8.
Commun Biol ; 6(1): 768, 2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481675

RESUMO

Aging manifests as progressive deteriorations in homeostasis, requiring systems-level perspectives to investigate the gradual molecular dysregulation of underlying biological processes. Here, we report systemic changes in the molecular regulation of biological processes under multiple lifespan-extending interventions. Differential Rank Conservation (DIRAC) analyses of mouse liver proteomics and transcriptomics data show that mechanistically distinct lifespan-extending interventions (acarbose, 17α-estradiol, rapamycin, and calorie restriction) generally tighten the regulation of biological modules. These tightening patterns are similar across the interventions, particularly in processes such as fatty acid oxidation, immune response, and stress response. Differences in DIRAC patterns between proteins and transcripts highlight specific modules which may be tightened via augmented cap-independent translation. Moreover, the systemic shifts in fatty acid metabolism are supported through integrated analysis of liver transcriptomics data with a mouse genome-scale metabolic model. Our findings highlight the power of systems-level approaches for identifying and characterizing the biological processes involved in aging and longevity.


Assuntos
Metabolismo dos Lipídeos , Longevidade , Animais , Camundongos , Envelhecimento , Modelos Animais de Doenças , Fígado , Ácidos Graxos
9.
Nat Med ; 29(4): 996-1008, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36941332

RESUMO

Multiomic profiling can reveal population heterogeneity for both health and disease states. Obesity drives a myriad of metabolic perturbations and is a risk factor for multiple chronic diseases. Here we report an atlas of cross-sectional and longitudinal changes in 1,111 blood analytes associated with variation in body mass index (BMI), as well as multiomic associations with host polygenic risk scores and gut microbiome composition, from a cohort of 1,277 individuals enrolled in a wellness program (Arivale). Machine learning model predictions of BMI from blood multiomics captured heterogeneous phenotypic states of host metabolism and gut microbiome composition better than BMI, which was also validated in an external cohort (TwinsUK). Moreover, longitudinal analyses identified variable BMI trajectories for different omics measures in response to a healthy lifestyle intervention; metabolomics-inferred BMI decreased to a greater extent than actual BMI, whereas proteomics-inferred BMI exhibited greater resistance to change. Our analyses further identified blood analyte-analyte associations that were modified by metabolomics-inferred BMI and partially reversed in individuals with metabolic obesity during the intervention. Taken together, our findings provide a blood atlas of the molecular perturbations associated with changes in obesity status, serving as a resource to quantify metabolic health for predictive and preventive medicine.


Assuntos
Multiômica , Obesidade , Humanos , Índice de Massa Corporal , Estudos Transversais , Obesidade/metabolismo , Fenótipo
10.
Reprod Toxicol ; 114: 33-43, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36283657

RESUMO

The rapidly evolving COVID-19 pandemic has resulted in an upsurge of scientific productivity to help address the global health crisis. One area of active research is the impact of COVID-19 on pregnancy. Here, we provide an epidemiological overview about what is known about the effects of maternal SARS-CoV-2 infection and COVID-19 vaccination on maternal-fetal outcomes, and identify gaps in knowledge. Pregnant people are at increased risk for severe COVID-19, and maternal SARS-CoV-2 infection increases the risk of negative maternal-fetal outcomes. Despite this elevated risk, there have been high rates of vaccine hesitancy, heightened by the initial lack of safety and efficacy data for COVID-19 vaccination in pregnancy. In response, retrospective cohort studies were performed to examine the impact of COVID-19 vaccination during pregnancy. Here, we report the vaccine's efficacy during pregnancy and its impact on maternal-fetal outcomes, as well as an overview of initial studies on booster shots in pregnancy. We found that pregnant people are at risk for more severe COVID-19 outcomes, maternal SARS-CoV-2 infection is associated with worse birth outcomes, COVID-19 vaccine hesitancy remains prevalent in the pregnant population, and COVID-19 vaccination and boosters promote better maternal-fetal outcomes. The results should help reduce vaccine hesitancy by alleviating concerns about the safety and efficacy of administering the COVID-19 vaccine during pregnancy. Overall, this review provides an introduction to COVID-19 during pregnancy. It is expected to help consolidate current knowledge, accelerate research of COVID-19 during pregnancy and inform clinical, policy, and research decisions regarding COVID-19 vaccination in pregnant people.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Feminino , Humanos , Gravidez , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/uso terapêutico , Pandemias , Estudos Retrospectivos , SARS-CoV-2 , Vacinação , Hesitação Vacinal , Resultado da Gravidez , Eficácia de Vacinas , Imunização Secundária , Risco
11.
Commun Biol ; 5(1): 1074, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209301

RESUMO

Dysregulation of sphingomyelin and ceramide metabolism have been implicated in Alzheimer's disease. Genome-wide and transcriptome-wide association studies have identified various genes and genetic variants in lipid metabolism that are associated with Alzheimer's disease. However, the molecular mechanisms of sphingomyelin and ceramide disruption remain to be determined. We focus on the sphingolipid pathway and carry out multi-omics analyses to identify central and peripheral metabolic changes in Alzheimer's patients, correlating them to imaging features. Our multi-omics approach is based on (a) 2114 human post-mortem brain transcriptomics to identify differentially expressed genes; (b) in silico metabolic flux analysis on context-specific metabolic networks identified differential reaction fluxes; (c) multimodal neuroimaging analysis on 1576 participants to associate genetic variants in sphingomyelin pathway with Alzheimer's disease pathogenesis; (d) plasma metabolomic and lipidomic analysis to identify associations of lipid species with dysregulation in Alzheimer's; and (e) metabolite genome-wide association studies to define receptors within the pathway as a potential drug target. We validate our hypothesis in amyloidogenic APP/PS1 mice and show prolonged exposure to fingolimod alleviated synaptic plasticity and cognitive impairment in mice. Our integrative multi-omics approach identifies potential targets in the sphingomyelin pathway and suggests modulators of S1P metabolism as possible candidates for Alzheimer's disease treatment.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Ceramidas , Cloridrato de Fingolimode , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Esfingolipídeos/metabolismo , Esfingolipídeos/uso terapêutico , Esfingomielinas/uso terapêutico
12.
medRxiv ; 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36032974

RESUMO

Background: COVID-19 infection in pregnant people has previously been shown to increase the risk for poor maternal-fetal outcomes. Despite this, there has been a lag in COVID-19 vaccination in pregnant people due to concerns over the potential effects of the vaccine on maternal-fetal outcomes. Here we examine the impact of COVID-19 vaccination and booster on maternal COVID-19 breakthrough infections and birth outcomes. Methods: This was a retrospective multicenter cohort study on the impact of COVID-19 vaccination on maternal-fetal outcomes for people that delivered (n=86,833) at Providence St. Joseph Health across Alaska, California, Montana, Oregon, New Mexico, Texas, and Washington from January 26, 2021 through July 11, 2022. Cohorts were defined by vaccination status at time of delivery: unvaccinated (n=48,492), unvaccinated propensity score matched (n=26,790), vaccinated (n=26,792; two doses of mRNA-1273 Moderna or BNT162b2 Pfizer-BioNTech), and/or boosted (n=7,616). The primary outcome was maternal COVID-19 infection. COVID-19 vaccination status at delivery, COVID-19 infection-related health care, preterm birth (PTB), stillbirth, very low birth weight (VLBW), and small for gestational age (SGA) were evaluated as secondary outcomes. Findings: Vaccinated pregnant people were significantly less likely to have a maternal COVID-19 infection than unvaccinated matched (p<0.0001) pregnant people. During a maternal COVID-19 infection, vaccinated pregnant people had similar rates of hospitalization (p=0.23), but lower rates of supplemental oxygen (p<0.05) or vasopressor (p<0.05) use than those in an unvaccinated matched cohort. Compared to an unvaccinated matched cohort, vaccinated people had significantly lower stillbirth rate (p<0.01) as well as no difference in rate of PTB (p=0.35), SGA (p=0.79), or rate of VLBW (>1,500 g; 0.31). Vaccinated people who were boosted had significantly lower rates of maternal COVID-19 infections (p<0.0001), COVID-19 related hospitalization (p<0.05), PTB (p<0.05), stillbirth (p<0.01), SGA (p<0.05), and VLBW (p<0.01), compared to vaccinated people that did not receive a third booster dose five months after completing the initial vaccination series. Interpretation: COVID-19 vaccination protects against adverse maternal-fetal outcomes with booster doses conferring additional protection against COVID-19 infection. It is therefore important for pregnant people to have high priority status for vaccination, and for them to stay current with their COVID-19 vaccination schedule. Funding: This study was funded by the National Institute for Child Health & Human Development and the William O. and K. Carole Ellison Foundation.

13.
Front Immunol ; 13: 889702, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711426

RESUMO

While a range of methods for stool collection exist, many require complicated, self-directed protocols and stool transfer. In this study, we introduce and validate a novel, wipe-based approach to fecal sample collection and stabilization for metagenomics analysis. A total of 72 samples were collected across four different preservation types: freezing at -20°C, room temperature storage, a commercial DNA preservation kit, and a dissolvable wipe used with DESS (dimethyl sulfoxide, ethylenediaminetetraacetic acid, sodium chloride) solution. These samples were sequenced and analyzed for taxonomic abundance metrics, bacterial metabolic pathway classification, and diversity analysis. Overall, the DESS wipe results validated the use of a wipe-based capture method to collect stool samples for microbiome analysis, showing an R2 of 0.96 for species across all kingdoms, as well as exhibiting a maintenance of Shannon diversity (3.1-3.3) and species richness (151-159) compared to frozen samples. Moreover, DESS showed comparable performance to the commercially available preservation kit (R2 of 0.98), and samples consistently clustered by subject across each method. These data support that the DESS wipe method can be used for stable, room temperature collection and transport of human stool specimens.


Assuntos
Microbiota , DNA Bacteriano/genética , Fezes/microbiologia , Humanos , RNA Ribossômico 16S/genética , Manejo de Espécimes/métodos
14.
Med ; 3(6): 388-405.e6, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35690059

RESUMO

BACKGROUND: Statins remain one of the most prescribed medications worldwide. While effective in decreasing atherosclerotic cardiovascular disease risk, statin use is associated with adverse effects for a subset of patients, including disrupted metabolic control and increased risk of type 2 diabetes. METHODS: We investigated the potential role of the gut microbiome in modifying patient responses to statin therapy across two independent cohorts (discovery n = 1,848, validation n = 991). Microbiome composition was assessed in these cohorts using stool 16S rRNA amplicon and shotgun metagenomic sequencing, respectively. Microbiome associations with markers of statin on-target and adverse effects were tested via a covariate-adjusted interaction analysis framework, utilizing blood metabolomics, clinical laboratory tests, genomics, and demographics data. FINDINGS: The hydrolyzed substrate for 3-hydroxy-3-methylglutarate-coenzyme-A (HMG-CoA) reductase, HMG, emerged as a promising marker for statin on-target effects in cross-sectional cohorts. Plasma HMG levels reflected both statin therapy intensity and known genetic markers for variable statin responses. Through exploring gut microbiome associations between blood-derived measures of statin effectiveness and adverse metabolic effects of statins, we find that heterogeneity in statin responses was consistently associated with variation in the gut microbiome across two independent cohorts. A Bacteroides-enriched and diversity-depleted gut microbiome was associated with more intense statin responses, both in terms of on-target and adverse effects. CONCLUSIONS: With further study and refinement, gut microbiome monitoring may help inform precision statin treatment. FUNDING: This research was supported by the M.J. Murdock Charitable Trust, WRF, NAM Catalyst Award, and NIH grant U19AG023122 awarded by the NIA.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Inibidores de Hidroximetilglutaril-CoA Redutases , Microbiota , Estudos Transversais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Microbioma Gastrointestinal/genética , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , RNA Ribossômico 16S/genética
15.
Sci Rep ; 12(1): 6117, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35413975

RESUMO

Genetics play an important role in late-onset Alzheimer's Disease (AD) etiology and dozens of genetic variants have been implicated in AD risk through large-scale GWAS meta-analyses. However, the precise mechanistic effects of most of these variants have yet to be determined. Deeply phenotyped cohort data can reveal physiological changes associated with genetic risk for AD across an age spectrum that may provide clues to the biology of the disease. We utilized over 2000 high-quality quantitative measurements obtained from blood of 2831 cognitively normal adult clients of a consumer-based scientific wellness company, each with CLIA-certified whole-genome sequencing data. Measurements included: clinical laboratory blood tests, targeted chip-based proteomics, and metabolomics. We performed a phenome-wide association study utilizing this diverse blood marker data and 25 known AD genetic variants and an AD-specific polygenic risk score (PGRS), adjusting for sex, age, vendor (for clinical labs), and the first four genetic principal components; sex-SNP interactions were also assessed. We observed statistically significant SNP-analyte associations for five genetic variants after correction for multiple testing (for SNPs in or near NYAP1, ABCA7, INPP5D, and APOE), with effects detectable from early adulthood. The ABCA7 SNP and the APOE2 and APOE4 encoding alleles were associated with lipid variability, as seen in previous studies; in addition, six novel proteins were associated with the e2 allele. The most statistically significant finding was between the NYAP1 variant and PILRA and PILRB protein levels, supporting previous functional genomic studies in the identification of a putative causal variant within the PILRA gene. We did not observe associations between the PGRS and any analyte. Sex modified the effects of four genetic variants, with multiple interrelated immune-modulating effects associated with the PICALM variant. In post-hoc analysis, sex-stratified GWAS results from an independent AD case-control meta-analysis supported sex-specific disease effects of the PICALM variant, highlighting the importance of sex as a biological variable. Known AD genetic variation influenced lipid metabolism and immune response systems in a population of non-AD individuals, with associations observed from early adulthood onward. Further research is needed to determine whether and how these effects are implicated in early-stage biological pathways to AD. These analyses aim to complement ongoing work on the functional interpretation of AD-associated genetic variants.


Assuntos
Doença de Alzheimer , Transportadores de Cassetes de Ligação de ATP/genética , Adulto , Doença de Alzheimer/genética , Apolipoproteína E2/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genômica , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
16.
Methods Mol Biol ; 2486: 315-334, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35437729

RESUMO

The dramatic convergence of molecular biology, genomics, proteomics, metabolomics, bioinformatics, and artificial intelligence has provided a substrate for deep understanding of the biological basis of health and disease. Systems biology is a holistic, dynamic, integrative, cross-disciplinary approach to biological complexity that embraces experimentation, technology, computation, and clinical translation. Systems Medicine integrates genome analyses and longitudinal deep phenotyping with biological pathways and networks to understand mechanisms of disease, identify relevant blood biomarkers, define druggable molecular targets, and enhance the maintenance or restoration of wellness. Two programs initiated our understanding of data-driven population-based wellness. The Pioneer 100 Study of Scientific Wellness and the much larger Arivale commercial program that followed had two spectacular results: demonstrating the feasibility and utility of collecting longitudinal multiomic data, and then generating dense, dynamic data clouds for each individual to utilize actionable metrics for promoting health and preventing disease when combined with personalized coaching. Future developments in these domains will enable better population health and personal, preventive, predictive, participatory (P4) health care.


Assuntos
Inteligência Artificial , Biologia de Sistemas , Biologia Computacional , Genômica , Proteômica
17.
Sci Rep ; 12(1): 6568, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484176

RESUMO

Risk stratification for hospitalized adults with COVID-19 is essential to inform decisions about individual patients and allocation of resources. So far, risk models for severe COVID outcomes have included age but have not been optimized to best serve the needs of either older or younger adults. Models also need to be updated to reflect improvements in COVID-19 treatments. This retrospective study analyzed data from 6906 hospitalized adults with COVID-19 from a community health system across five states in the western United States. Risk models were developed to predict mechanical ventilation illness or death across one to 56 days of hospitalization, using clinical data available within the first hour after either admission with COVID-19 or a first positive SARS-CoV-2 test. For the seven-day interval, models for age ≥ 18 and < 50 years reached AUROC 0.81 (95% CI 0.71-0.91) and models for age ≥ 50 years reached AUROC 0.82 (95% CI 0.77-0.86). Models revealed differences in the statistical significance and relative predictive value of risk factors between older and younger patients including age, BMI, vital signs, and laboratory results. In addition, for hospitalized patients, sex and chronic comorbidities had lower predictive value than vital signs and laboratory results.


Assuntos
COVID-19 , Adulto , COVID-19/epidemiologia , Hospitalização , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2 , Estados Unidos
18.
Lancet Digit Health ; 4(2): e95-e104, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35034863

RESUMO

BACKGROUND: The impact of maternal SARS-CoV-2 infection remains unclear. In this study, we evaluated the risk of maternal SARS-CoV-2 infection on birth outcomes and how this is modulated by the pregnancy trimester in which the infection occurs. We also developed models to predict gestational age at delivery for people following a SARS-CoV-2 infection during pregnancy. METHODS: We did a retrospective cohort study of the impact of maternal SARS-CoV-2 infection on birth outcomes. We used clinical data from Providence St Joseph Health electronic health records for pregnant people who delivered in the USA at the Providence, Swedish, or Kadlec sites in Alaska, California, Montana, Oregon, or Washington. The SARS-CoV-2 positive cohort included people who had a positive SARS-CoV-2 PCR-based test during pregnancy, subdivided by trimester of infection. No one in this cohort had been vaccinated for COVID-19 at time of infection. The SARS-CoV-2 negative cohort were people with at least one negative SARS-CoV-2 PCR-based test and no positive tests during pregnancy. Cohorts were matched on common covariates impacting birth outcomes, and univariate and multivariate analysis were done to investigate risk factors and predict outcomes. The primary outcome was gestational age at delivery with annotation of preterm birth classification. We trained multiple supervised learning models on 24 features of the SARS-CoV-2 positive cohort to evaluate performance and feature importance for each model and discuss the impact of SARS-CoV-2 infection on gestational age at delivery. FINDINGS: Between March 5, 2020, and July 4, 2021, 73 666 pregnant people delivered, 18 335 of whom had at least one SARS-CoV-2 test during pregnancy before Feb 14, 2021. We observed 882 people infected with SARS-CoV-2 during their pregnancy (first trimester n=85; second trimester n=226; and third trimester n=571) and 19 769 people who have never tested positive for SARS-CoV-2 and received at least one negative SARS-CoV-2 test during their pregnancy. SARS-CoV-2 infection indicated an increased risk of preterm delivery (p<0·05) and stillbirth (p<0·05), accounted for primarily by first and second trimester SARS-CoV-2 infections. Gestational age at SARS-CoV-2 infection was correlated with gestational age at delivery (p<0·01) and had the greatest impact on predicting gestational age at delivery. The people in this study had mild or moderate SARS-CoV-2 infections and acute COVID-19 severity was not correlated with gestational age at delivery (p=0·31). INTERPRETATION: These results suggest that pregnant people would benefit from increased monitoring and enhanced prenatal care after first or second trimester SARS-CoV-2 infection, regardless of acute COVID-19 severity. FUNDING: US National Institutes of Health.


Assuntos
COVID-19/epidemiologia , Idade Gestacional , Complicações Infecciosas na Gravidez/epidemiologia , Resultado da Gravidez/epidemiologia , Trimestres da Gravidez , Nascimento Prematuro , Adulto , COVID-19/diagnóstico , Estudos de Coortes , Feminino , Humanos , Modelos Estatísticos , Gravidez , Complicações Infecciosas na Gravidez/diagnóstico , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2 , Estados Unidos/epidemiologia
19.
J Clin Invest ; 132(2)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34813500

RESUMO

Vast numbers of differentially expressed genes and perturbed networks have been identified in Alzheimer's disease (AD), however, neither disease nor brain region specificity of these transcriptome alterations has been explored. Using RNA-Seq data from 231 temporal cortex and 224 cerebellum samples from patients with AD and progressive supranuclear palsy (PSP), a tauopathy, we identified a striking correlation in the directionality and magnitude of gene expression changes between these 2 neurodegenerative proteinopathies. Further, the transcriptomic changes in AD and PSP brains ware highly conserved between the temporal and cerebellar cortices, indicating that highly similar transcriptional changes occur in pathologically affected and grossly less affected, albeit functionally connected, areas of the brain. Shared up- or downregulated genes in AD and PSP are enriched in biological pathways. Many of these genes also have concordant protein changes and evidence of epigenetic control. These conserved transcriptomic alterations of 2 distinct proteinopathies in brain regions with and without significant gross neuropathology have broad implications. AD and other neurodegenerative diseases are likely characterized by common disease or compensatory pathways with widespread perturbations in the whole brain. These findings can be leveraged to develop multifaceted therapies and biomarkers that address these common, complex, and ubiquitous molecular alterations in neurodegenerative diseases.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Paralisia Supranuclear Progressiva/metabolismo , Transcriptoma , Idoso , Feminino , Humanos , Masculino
20.
Nat Biotechnol ; 40(1): 110-120, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34489601

RESUMO

A better understanding of the metabolic alterations in immune cells during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may elucidate the wide diversity of clinical symptoms experienced by individuals with coronavirus disease 2019 (COVID-19). Here, we report the metabolic changes associated with the peripheral immune response of 198 individuals with COVID-19 through an integrated analysis of plasma metabolite and protein levels as well as single-cell multiomics analyses from serial blood draws collected during the first week after clinical diagnosis. We document the emergence of rare but metabolically dominant T cell subpopulations and find that increasing disease severity correlates with a bifurcation of monocytes into two metabolically distinct subsets. This integrated analysis reveals a robust interplay between plasma metabolites and cell-type-specific metabolic reprogramming networks that is associated with disease severity and could predict survival.


Assuntos
COVID-19/sangue , COVID-19/imunologia , Monócitos/metabolismo , Análise de Célula Única , Linfócitos T/metabolismo , COVID-19/diagnóstico , COVID-19/metabolismo , Humanos , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA