Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur Radiol ; 32(8): 5330-5338, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35238972

RESUMO

OBJECTIVES: To determine if predictions of the Lung Cancer Prediction convolutional neural network (LCP-CNN) artificial intelligence (AI) model are analogous to the Brock model. METHODS: In total, 10,485 lung nodules in 4660 participants from the National Lung Screening Trial (NLST) were analysed. Both manual and automated nodule measurements were inputted into the Brock model, and this was compared to LCP-CNN. The performance of an experimental AI model was tested after ablating imaging features in a manner analogous to removing predictors from the Brock model. First, the nodule was ablated leaving lung parenchyma only. Second, a sphere of the same size as the nodule was implanted in the parenchyma. Third, internal texture of both nodule and parenchyma was ablated. RESULTS: Automated axial diameter (AUC 0.883) and automated equivalent spherical diameter (AUC 0.896) significantly improved the accuracy of Brock when compared to manual measurement (AUC 0.873), although not to the level of the LCP-CNN (AUC 0.936). Ablating nodule and parenchyma texture (AUC 0.915) led to a small drop in AI predictive accuracy, as did implanting a sphere of the same size as the nodule (AUC 0.889). Ablating the nodule leaving parenchyma only led to a large drop in AI performance (AUC 0.717). CONCLUSIONS: Feature ablation is a feasible technique for understanding AI model predictions. Nodule size and morphology play the largest role in AI prediction, with nodule internal texture and background parenchyma playing a limited role. This is broadly analogous to the relative importance of morphological factors over clinical factors within the Brock model. KEY POINTS: • Brock lung cancer risk prediction accuracy was significantly improved using automated axial or equivalent spherical measurements of lung nodule diameter, when compared to manual measurements. • Predictive accuracy was further improved by using the Lung Cancer Prediction convolutional neural network, an artificial intelligence-based model which obviates the requirement for nodule measurement. • Nodule size and morphology are important factors in artificial intelligence lung cancer risk prediction, with nodule texture and background parenchyma contributing a small, but measurable, role.


Assuntos
Neoplasias Pulmonares , Lesões Pré-Cancerosas , Inteligência Artificial , Humanos , Pulmão/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Redes Neurais de Computação , Tomografia Computadorizada por Raios X/métodos
2.
Eur Radiol ; 31(6): 4023-4030, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33269413

RESUMO

OBJECTIVES: To evaluate the performance of a novel convolutional neural network (CNN) for the classification of typical perifissural nodules (PFN). METHODS: Chest CT data from two centers in the UK and The Netherlands (1668 unique nodules, 1260 individuals) were collected. Pulmonary nodules were classified into subtypes, including "typical PFNs" on-site, and were reviewed by a central clinician. The dataset was divided into a training/cross-validation set of 1557 nodules (1103 individuals) and a test set of 196 nodules (158 individuals). For the test set, three radiologically trained readers classified the nodules into three nodule categories: typical PFN, atypical PFN, and non-PFN. The consensus of the three readers was used as reference to evaluate the performance of the PFN-CNN. Typical PFNs were considered as positive results, and atypical PFNs and non-PFNs were grouped as negative results. PFN-CNN performance was evaluated using the ROC curve, confusion matrix, and Cohen's kappa. RESULTS: Internal validation yielded a mean AUC of 91.9% (95% CI 90.6-92.9) with 78.7% sensitivity and 90.4% specificity. For the test set, the reader consensus rated 45/196 (23%) of nodules as typical PFN. The classifier-reader agreement (k = 0.62-0.75) was similar to the inter-reader agreement (k = 0.64-0.79). Area under the ROC curve was 95.8% (95% CI 93.3-98.4), with a sensitivity of 95.6% (95% CI 84.9-99.5), and specificity of 88.1% (95% CI 81.8-92.8). CONCLUSION: The PFN-CNN showed excellent performance in classifying typical PFNs. Its agreement with radiologically trained readers is within the range of inter-reader agreement. Thus, the CNN-based system has potential in clinical and screening settings to rule out perifissural nodules and increase reader efficiency. KEY POINTS: • Agreement between the PFN-CNN and radiologically trained readers is within the range of inter-reader agreement. • The CNN model for the classification of typical PFNs achieved an AUC of 95.8% (95% CI 93.3-98.4) with 95.6% (95% CI 84.9-99.5) sensitivity and 88.1% (95% CI 81.8-92.8) specificity compared to the consensus of three readers.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Nódulo Pulmonar Solitário , Humanos , Países Baixos , Nódulo Pulmonar Solitário/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA