Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Am J Sports Med ; 52(2): 492-502, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38251832

RESUMO

BACKGROUND: Preprofessional ballet dancers are exposed to the risk of injuries, primarily in the lower extremities, with most injuries occurring during jumping and landing activities. Interlimb asymmetry during jumping and landing activities has been associated with the injury risk in adolescent athletes, but this has not been examined in dancers. PURPOSE: To investigate associations between interlimb asymmetry during a double-leg countermovement jump (DL-CMJ) and single-leg jump (SLJ) and the injury risk in adolescent preprofessional ballet dancers. STUDY DESIGN: Cohort study; Level of evidence, 2. METHODS: Adolescent preprofessional ballet dancers (N = 255) performed 3 DL-CMJs and 3 SLJs on force plates during annual screening. Absolute and directional (separate values for left and right limb dominance) asymmetries in a set of kinetic variables during a DL-CMJ and in jump height during an SLJ were calculated. Each variable was characterized as having "high" or "normal" asymmetry according to the percentage of asymmetry (greater than or less than or equal to, respectively, the mean ± 0.5 SD) based on the present sample. Risk ratios (RRs) and 95% CIs were calculated based on the injury incidence in the subsequent academic year. RESULTS: Of the 242 dancers that satisfied the inclusion criteria, 128 injuries were observed in the subsequent academic year. In the whole sample, 3 absolute, 7 left limb-dominant, and 1 right limb-dominant kinetic asymmetry in the eccentric, concentric, and landing phases of the DL-CMJ as well as left limb-dominant jump height asymmetry in the SLJ were associated with a significant (P < .001) increase in the injury risk (RR, 1.28-1.69 [95% CI, 1.02-2.37]). Separating by sex, asymmetries in the eccentric and landing phase of the DL-CMJ were not significant in boys, while in girls, RRs for asymmetries in the eccentric and landing phase of the DL-CMJ increased, and SLJ jump height asymmetry was not significant. CONCLUSION: Higher asymmetries in certain kinetic variables during the DL-CMJ and in jump height during the SLJ were associated with an elevated risk of injuries in elite preprofessional ballet dancers with some sex-specific differences. Associations were mainly identified for high left limb-dominant asymmetry in the takeoff phase, suggesting that the injury risk may be specific to a relative right limb deficit.


Assuntos
Dança , Masculino , Feminino , Adolescente , Humanos , Estudos de Coortes , Perna (Membro) , Extremidade Inferior , Fenômenos Biomecânicos
2.
Artigo em Inglês | MEDLINE | ID: mdl-29276707

RESUMO

FreeBody is a musculoskeletal model of the lower limb used to calculate predictions of muscle and joint contact forces. The validation of FreeBody has been described in a number of publications; however, its reliability has yet to be established. The purpose of this study was, therefore, to establish the test-retest reliability of FreeBody in a population of healthy adults in order to add support to previous and future research using FreeBody that demonstrates differences between cohorts after an intervention. We hypothesized that test-retest estimations of knee contact forces from FreeBody would demonstrate a high intra-class correlation. Kinematic and kinetic data from nine older participants (4 men: mean age = 63 ± 11 years; 5 women: mean age = 49 ± 4 years) performing level walking and stair ascent was collected on consecutive days and then analyzed using FreeBody. There was a good level of intra-session agreement between the waveforms for the individual trials of each activity during testing session 1 (R = 0.79-0.97). Similarly, overall there was a good inter-session agreement within subjects (R = 0.69-0.97) although some subjects showed better agreement than others. There was a high level of agreement between the group mean waveforms of the two sessions for all variables (R = 0.882-0.997). The intra-class correlation coefficients (ICC) were very high for peak tibiofemoral joint contact forces (TFJ) and hamstring forces during gait, for peak patellofemoral joint contact forces and quadriceps forces during stair ascent and for peak lateral TFJ and the proportion of TFJ accounted for by the medial compartment during both tasks (ICC = 0.86-0.96). Minimal detectable change (MDC) of the peak knee forces during gait ranged between 0.43 and 1.53 × body weight (18-170% of the mean peak values). The smallest MDCs were found for medial TFJ share (4.1 and 5.8% for walking and stair ascent, respectively, or 4.8 and 6.7% of the mean peak values). In conclusion, the results of this study support the use of FreeBody to investigate the effect of interventions on muscle and joint contact forces at the cohort level, but care should be taken if using FreeBody at the subject level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA