Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(5): e0266822, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35544516

RESUMO

Inspired Therapeutics (Merritt Island, FL) is developing a mechanical circulatory support (MCS) system designed as a single driver with interchangeable, extracorporeal, magnetically levitated pumps. The NeoMate system design features an integrated centrifugal rotary pump, motor, and controller that will be housed in a single compact unit. Conceptually, the primary innovation of this technology will be the combination of disposable, low-cost pumps for use with a single, multi-functional, universal controller to support multiple pediatric cardiopulmonary indications. In response to the paucity of clinically available pediatric devices, Inspired Therapeutics is specifically targeting the underserved neonate and infant heart failure (HF) patient population first. In this article, we present the development of the prototype Inspired Therapeutics NeoMate System for pediatric left ventricular assist device (LVAD) support, and feasibility testing in static mock flow loops (H-Q curves), dynamic mock flow loops (hemodynamics), and in an acute healthy ovine model (hemodynamics and clinical applicability). The resultant hydrodynamic and hemodynamic data demonstrated the ability of this prototype pediatric LVAD and universal controller to function over a range of rotary pump speeds (500-6000 RPM), to provide pump flow rates of up to 2.6 L/min, and to volume unload the left ventricle in acute animals. Key engineering challenges observed and proposed solutions for the next design iteration are also presented.


Assuntos
Insuficiência Cardíaca , Coração Auxiliar , Animais , Criança , Desenho de Equipamento , Estudos de Viabilidade , Insuficiência Cardíaca/terapia , Hemodinâmica/fisiologia , Humanos , Recém-Nascido , Ovinos
2.
Cardiovasc Eng Technol ; 13(4): 624-637, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35013917

RESUMO

PURPOSE: Pediatric heart failure patients remain in critical need of a dedicated mechanical circulatory support (MCS) solution as development efforts for specific pediatric devices continue to fall behind those for the adult population. The Inspired Pediatric VAD is being developed as a pediatric specific MCS solution to provide up to 30-days of circulatory or respiratory support in a compact modular package that could allow for patient ambulation during treatment. METHODS: Hydrodynamic performance (flows, pressures), impeller/rotor mechanical properties (torques, forces), and flow shear stress and residence time distributions of the latest design version, Inspired Pediatric VAD V3, were numerically predicted and investigated using computational fluid dynamics (CFD) software (SolidWorks Flow Simulator). RESULTS: Hydrodynamic performance was numerically predicted, indicating no change in flow and pressure head compared to the previous device design (V2), while displaying increased impeller/rotor torques and translation forces enabled by improved geometry. Shear stress and flow residence time volumetric distributions are presented over a range of pump rotational speeds and flow rates. At the lowest pump operating point (3000 RPM, 0.50 L/min, 75 mmHg), 79% of the pump volume was in the shear stress range of 0-10 Pa with < 1% of the volume in the critical range of 150-1000 Pa for blood damage. At higher speed and flow (5000 RPM, 3.50 L/min, 176 mmHg), 65% of the volume resided in the 0-10 Pa range compared to 2.3% at 150-1000 Pa. CONCLUSIONS: The initial computational characterization of the Inspired Pediatric VAD V3 is encouraging and future work will include device prototype testing in a mock circulatory loop and acute large animal model.


Assuntos
Insuficiência Cardíaca , Coração Auxiliar , Animais , Desenho de Equipamento , Insuficiência Cardíaca/terapia , Humanos , Hidrodinâmica , Pressão , Estresse Mecânico
3.
Cardiovasc Eng Technol ; 13(2): 307-317, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34518953

RESUMO

PURPOSE: Despite the availability of first-generation extracorporeal mechanical circulatory support (MCS) systems that are widely used throughout the world, there is a need for the next generation of smaller, more portable devices (designed without cables and a minimal number of connectors) that can be used in all in-hospital and transport settings to support patients in heart failure. Moreover, a system that can be universally used for all indications for use including cardiopulmonary bypass (CPB), uni- or biventricular support (VAD), extracorporeal membrane oxygenation (ECMO) and respiratory assist that is suitable for use for adult, neonate, and pediatric patients is desirable. Providing a single, well designed, universal technology could reduce the incidence of human errors by limiting the need for training of hospital staff on a single system for a variety of indications throughout the hospital rather than having to train on multiple complex systems. The objective of this manuscript is to describe preliminary research to develop the first prototype pump for use as a ventricular assist device for pediatric patients with the Inspired Universal MCS technology. The Inspired VAD Universal System is an innovative extracorporeal blood pumping system utilizing novel MagLev technology in a single portable integrated motor/controller unit which can power a variety of different disposable pump modules intended for neonate, pediatric, and adult ventricular and respiratory assistance. METHODS: A prototype of the Inspired Pediatric VAD was constructed to determine the hemodynamic requirements for pediatric applications. The magnitude/range of hydraulic torque of the internal impeller was quantified. The hydrodynamic performance of the prototype pump was benchmarked using a static mock flow loop model containing a heated blood analogue solution to test the pump over a range of rotational speeds (500-6000 RPM), flow rates (0-3.5 L/min), and pressures (0 to ~ 420 mmHg). The device was initially powered by a shaft-driven DC motor in lieu of a full MagLev design, which was also used to calculate the fluid torque acting on the impeller. RESULTS: The pediatric VAD produced flows as high as 4.27 L/min against a pressure of 127 mmHg at 6000 RPM and the generated pressure and flow values fell within the desired design specifications. CONCLUSIONS: The empirically determined performance and torque values establish the requirements for the magnetically levitated motor design to be used in the Inspired Universal MagLev System. This next step in our research and development is to fabricate a fully integrated and functional magnetically levitated pump, motor and controller system that meets the product requirement specifications and achieves a state of readiness for acute ovine animal studies to verify safety and performance of the system.


Assuntos
Insuficiência Cardíaca , Coração Auxiliar , Animais , Criança , Desenho de Equipamento , Insuficiência Cardíaca/terapia , Hemodinâmica , Humanos , Ovinos , Torque
4.
ASAIO J ; 67(9): 1026-1035, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33315663

RESUMO

Pediatric heart failure (HF) patients have been a historically underserved population for mechanical circulatory support (MCS) therapy. To address this clinical need, we are developing a low cost, universal magnetically levitated extracorporeal system with interchangeable pump heads for pediatric support. Two impeller and pump designs (pump V1 and V2) for the pediatric pump were developed using dimensional analysis techniques and classic pump theory based on defined performance criteria (generated flow, pressure, and impeller diameter). The designs were virtually constructed using computer-aided design (CAD) software and 3D flow and pressure features were analyzed using computational fluid dynamics (CFD) analysis. Simulated pump designs (V1, V2) were operated at higher rotational speeds (~5,000 revolutions per minute [RPM]) than initially estimated (4,255 RPM) to achieve the desired operational point (3.5 L/min flow at 150 mm Hg). Pump V2 outperformed V1 by generating approximately 30% higher pressures at all simulated rotational speeds and at 5% lower priming volume. Simulated hydrodynamic performance (achieved flow and pressure, hydraulic efficiency) of our pediatric pump design, featuring reduced impeller size and priming volume, compares favorably to current commercially available MCS devices.


Assuntos
Insuficiência Cardíaca , Coração Auxiliar , Criança , Desenho de Equipamento , Insuficiência Cardíaca/cirurgia , Humanos , Hidrodinâmica , Desenho de Prótese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA