Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 9(1): 361, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750672

RESUMO

Urban regions emit a large fraction of anthropogenic emissions of greenhouse gases (GHG) such as carbon dioxide (CO2) and methane (CH4) that contribute to modern-day climate change. As such, a growing number of urban policymakers and stakeholders are adopting emission reduction targets and implementing policies to reach those targets. Over the past two decades research teams have established urban GHG monitoring networks to determine how much, where, and why a particular city emits GHGs, and to track changes in emissions over time. Coordination among these efforts has been limited, restricting the scope of analyses and insights. Here we present a harmonized data set synthesizing urban GHG observations from cities with monitoring networks across North America that will facilitate cross-city analyses and address scientific questions that are difficult to address in isolation.

2.
Geophys Res Lett ; 48(11): e2021GL092744, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34149111

RESUMO

Responses to COVID-19 have resulted in unintended reductions of city-scale carbon dioxide (CO2) emissions. Here, we detect and estimate decreases in CO2 emissions in Los Angeles and Washington DC/Baltimore during March and April 2020. We present three lines of evidence using methods that have increasing model dependency, including an inverse model to estimate relative emissions changes in 2020 compared to 2018 and 2019. The March decrease (25%) in Washington DC/Baltimore is largely supported by a drop in natural gas consumption associated with a warm spring whereas the decrease in April (33%) correlates with changes in gasoline fuel sales. In contrast, only a fraction of the March (17%) and April (34%) reduction in Los Angeles is explained by traffic declines. Methods and measurements used herein highlight the advantages of atmospheric CO2 observations for providing timely insights into rapidly changing emissions patterns that can empower cities to course-correct CO2 reduction activities efficiently.

3.
Atmos Chem Phys ; 21(8)2021.
Artigo em Inglês | MEDLINE | ID: mdl-36873665

RESUMO

As city governments take steps towards establishing emissions reduction targets, the atmospheric research community is increasingly able to assist in tracking emissions reductions. Researchers have established systems for observing atmospheric greenhouse gases in urban areas with the aim of attributing greenhouse gas concentration enhancements (and thus, emissions) to the region in question. However, to attribute enhancements to a particular region, one must isolate the component of the observed concentration attributable to fluxes inside the region by removing the background, which is the component due to fluxes outside. In this study, we demonstrate methods to construct several versions of a background for our carbon dioxide and methane observing network in the Washington, DC and Baltimore, MD metropolitan region. Some of these versions rely on transport and flux models, while others are based on observations upwind of the domain. First, we evaluate the backgrounds in a synthetic data framework, then we evaluate against real observations from our urban network. We find that backgrounds based on upwind observations capture the variability better than model-based backgrounds, although care must be taken to avoid bias from biospheric carbon dioxide fluxes near background stations in summer. Model-based backgrounds also perform well when upwind fluxes can be modeled accurately. Our study evaluates different background methods and provides guidance determining background methodology that can impact the design of urban monitoring networks.

4.
Artigo em Inglês | MEDLINE | ID: mdl-33133298

RESUMO

We present the organization, structure, instrumentation, and measurements of the Northeast Corridor greenhouse gas observation network. This network of tower-based in situ carbon dioxide and methane observation stations was established in 2015 with the goal of quantifying emissions of these gases in urban areas in the northeastern United States. A specific focus of the network is the cities of Baltimore, MD, and Washington, DC, USA, with a high density of observation stations in these two urban areas. Additional observation stations are scattered throughout the northeastern US, established to complement other existing urban and regional networks and to investigate emissions throughout this complex region with a high population density and multiple metropolitan areas. Data described in this paper are archived at the National Institute of Standards and Technology and can be found at https://doi.org/10.18434/M32126 (Karion et al., 2019).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA