Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39315505

RESUMO

Uveal melanoma (UM) and nonacral cutaneous melanoma (CM) are distinct entities with varied genetic landscapes despite both arising from melanocytes. There are, however, similarities in that they most frequently affect people of European ancestry, and high penetrance germline variants in BAP1, POT1 and CDKN2A have been shown to predispose to both UM and CM. This study aims to further explore germline variants in patients affected by both UM and CM, shedding light on the underlying genetic mechanism causing these diseases. Using exome sequencing we analysed germline DNA samples from a cohort of 83 Australian patients diagnosed with both UM and CM. Eight (10%) patients were identified that carried pathogenic mutations in known melanoma predisposition genes POT1, MITF, OCA2, SLC45A2 and TYR. Three (4%) patients carried pathogenic variants in genes previously linked with other cancer syndromes (ATR, BRIP1 and MSH6) and another three cases carried monoallelic pathogenic variants in recessive cancer genes (xeroderma pigmentosum and Fanconi anaemia), indicating that reduced penetrance of phenotype in these individuals may contribute to the development of both UM and CM. These findings highlight the need for further studies characterising the role of these genes in melanoma susceptibility.

2.
Curr Res Immunol ; 5: 100079, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38910966

RESUMO

Lymphoblastoid cell lines (LCLs) are immortalised peripheral B lymphocytes, transformed via infection with Epstein Barr virus (EBV). The use of LCLs to study B cell function remains controversial and core markers to define physiological B cell populations are not consistent between studies of physiological B cells and LCLs. A consensus on the nature of these commonly used cell lines has not been reached. Recently, a core set of markers to subtype peripheral B cells was proposed, addressing the lack of agreed markers for B cell characterisation. In this present study, the consensus panel was applied to describe the B cell subtypes in LCLs. We found that LCLs were generally not physiologically representative of B cells, with most cells harbouring marker combinations absent on peripheral B cells. Some B cell subtyping markers were fundamentally altered during EBV transformation to LCLs (e.g. CD19, CD21). Notably, most LCLs secreted IgG but the associated marker combinations were predominantly only present in vitro following EBV transformation. This study therefore informs interpretation of past investigations, and planning of future studies using LCLs, as these cells are unlikely to behave like their pre-transformed B cell subtype.

3.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338943

RESUMO

An apical component of the cell cycle checkpoint and DNA damage repair response is the ataxia-telangiectasia mutated (ATM) Ser/Thr protein kinase. A variant of ATM, Ser49Cys (rs1800054; minor allele frequency = 0.011), has been associated with an elevated risk of melanoma development; however, the functional consequence of this variant is not defined. ATM-dependent signalling in response to DNA damage has been assessed in a panel of patient-derived lymphoblastoid lines and primary human melanocytic cell strains heterozygous for the ATM Ser49Cys variant allele. The ATM Ser49Cys allele appears functional for acute p53-dependent signalling in response to DNA damage. Expression of the variant allele did reduce the efficacy of oncogene expression in inducing senescence. These findings demonstrate that the ATM 146C>G Ser49Cys allele has little discernible effect on the acute response to DNA damage but has reduced function observed in the chronic response to oncogene over-expression. Analysis of melanoma, naevus and skin colour genomics and GWAS analyses have demonstrated no association of this variant with any of these outcomes. The modest loss of function detected suggest that the variant may act as a modifier of other variants of ATM/p53-dependent signalling.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Melanoma , Humanos , Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Melanoma/genética , Oncogenes , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética
5.
Pigment Cell Melanoma Res ; 36(2): 246-251, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36617535

RESUMO

Immune checkpoint inhibitors (ICIs) have fundamentally improved survival from advanced cutaneous melanoma. Significant efforts have been made to understand the ICI response to identify ways to further improve outcomes. One such approach has been to investigate gene expression associated with response to ICI, which has identified various immune-related mRNA signatures, including a six-gene IFN-γ signature (IFN-γ6 ), an expanded immune signature (IFN-γ18 ), an effector T-cell gene signature (Teff ), and a Teff -associated and IFN-γ-associated gene signature (Teff + IFN-γ). Given that these signatures appear to reflect expression from T cells and the level of tumour-infiltrating immune cells has been associated with survival, we hypothesised that the prognostic value of the signatures is not limited to ICI treatment and investigated if they were associated with survival also in patients who never received ICI. The signatures were not present in melanoma cell lines when compared with tumour samples, confirming that the signatures were likely derived from the samples' non-tumour (immune) components. We acquired expression and survival data from five melanoma cohorts with a wide range of disease stages, treatments and metrics for survival, and correlated the expression signatures with survival. All four signatures were significantly associated (p < .05) with survival in four of five cohorts, with hazard ratios ranging from 0.69 to 0.92. We conclude that these immune signatures' association with survival is not specific to ICI-treated patients, but present in a number of settings.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Imunoterapia , Linhagem Celular , Melanoma Maligno Cutâneo
6.
Cancer Discov ; 12(12): 2856-2879, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36098958

RESUMO

Melanoma is a cancer of melanocytes, with multiple subtypes based on body site location. Cutaneous melanoma is associated with skin exposed to ultraviolet radiation; uveal melanoma occurs in the eyes; mucosal melanoma occurs in internal mucous membranes; and acral melanoma occurs on the palms, soles, and nail beds. Here, we present the largest whole-genome sequencing study of melanoma to date, with 570 tumors profiled, as well as methylation and RNA sequencing for subsets of tumors. Uveal melanoma is genomically distinct from other melanoma subtypes, harboring the lowest tumor mutation burden and with significantly mutated genes in the G-protein signaling pathway. Most cutaneous, acral, and mucosal melanomas share alterations in components of the MAPK, PI3K, p53, p16, and telomere pathways. However, the mechanism by which these pathways are activated or inactivated varies between melanoma subtypes. Additionally, we identify potential novel germline predisposition genes for some of the less common melanoma subtypes. SIGNIFICANCE: This is the largest whole-genome analysis of melanoma to date, comprehensively comparing the genomics of the four major melanoma subtypes. This study highlights both similarities and differences between the subtypes, providing insights into the etiology and biology of melanoma. This article is highlighted in the In This Issue feature, p. 2711.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Raios Ultravioleta , Genômica , Mutação , Melanoma Maligno Cutâneo
7.
J Thorac Oncol ; 17(7): 873-889, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35462085

RESUMO

The most common malignancies that develop in carriers of BAP1 germline mutations include diffuse malignant mesothelioma, uveal and cutaneous melanoma, renal cell carcinoma, and less frequently, breast cancer, several types of skin carcinomas, and other tumor types. Mesotheliomas in these patients are significantly less aggressive, and patients require a multidisciplinary approach that involves genetic counseling, medical genetics, pathology, surgical, medical, and radiation oncology expertise. Some BAP1 carriers have asymptomatic mesothelioma that can be followed by close clinical observation without apparent adverse outcomes: they may survive many years without therapy. Others may grow aggressively but very often respond to therapy. Detecting BAP1 germline mutations has, therefore, substantial medical, social, and economic impact. Close monitoring of these patients and their relatives is expected to result in prolonged life expectancy, improved quality of life, and being cost-effective. The co-authors of this paper are those who have published the vast majority of cases of mesothelioma occurring in patients carrying inactivating germline BAP1 mutations and who have studied the families affected by the BAP1 cancer syndrome for many years. This paper reports our experience. It is intended to be a source of information for all physicians who care for patients carrying germline BAP1 mutations. We discuss the clinical presentation, diagnostic and treatment challenges, and our recommendations of how to best care for these patients and their family members, including the potential economic and psychosocial impact.


Assuntos
Neoplasias Pulmonares , Melanoma , Mesotelioma Maligno , Mesotelioma , Neoplasias Cutâneas , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/cirurgia , Melanoma/genética , Mesotelioma/diagnóstico , Mesotelioma/genética , Mesotelioma/cirurgia , Qualidade de Vida , Neoplasias Cutâneas/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
8.
Pigment Cell Melanoma Res ; 35(3): 369-386, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35229492

RESUMO

Acral melanoma (AM) tumors arise on the palms, soles, fingers, toes, and nailbeds. A comprehensive systematic meta-analysis of AM genomic aberrations has not been conducted to date. A literature review was carried out to identify studies sequencing AM. Whole-genome/exome data from 181 samples were identified. Targeted panel sequencing data from MSK-IMPACT were included as a validation cohort (n = 92), and studies using targeted hot spot sequencing were also collated for BRAF (n = 26 studies), NRAS (n = 21), and KIT (n = 32). Statistical analysis indicated BRAF, NRAS, PTEN, TYRP1, and KIT as significantly mutated genes. Frequent copy-number aberrations were also found for important cancer genes, such as CDKN2A, KIT, MDM2, CCND1, CDK4, and PAK1, among others. Mapping genomic alterations within the context of the hallmarks of cancer identified four components frequently altered, including (i) sustained proliferative signaling and (ii) evading growth suppression, (iii) genome instability and mutation, and (iv) enabling replicative immortality. This analysis provides the largest analysis of genomic aberrations in AM in the literature to date and highlights pathways that may be therapeutically targetable.


Assuntos
Melanoma , Neoplasias Cutâneas , Genômica , Humanos , Melanoma/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/patologia , Melanoma Maligno Cutâneo
9.
Pigment Cell Melanoma Res ; 35(3): 303-319, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35218154

RESUMO

The B-cell system plays an important role in the melanoma immune response; however, consensus has yet to be reached in many facets. Here, we comprehensively review human studies only, due to fundamental differences in the humoral response with animal models. Tumour-infiltrating B-cells are associated with contradictory prognostic values, reflecting a lack of agreement between studies on cell subset classification and differences in the markers used, particularly the common use of a single marker not differentiating multiple subsets. Tertiary lymphoid structures (TLS) organise T-cells and B-cells within tumours to generate a local anti-tumour response and TLS presence associates with improved survival in response to immune checkpoint blockade, in late-stage disease. Autoantibody production is increased in melanoma patients and has been proposed as biomarkers for diagnosis, prognosis and treatment/toxicity response; however, no consistent targets are yet identified. The function of antibodies in an anti-tumour response is determined by its isotype and subclass; IgG4 is immune-suppressive and robustly correlate with poor patient survival in melanoma. We conclude that the current B-cell literature needs careful interpretation based on the methods used and that we need a consensus of markers to define B-cells and associated lymphoid organs. Furthermore, future studies need to not only examine antibody targets, but also isotypes when considering functional roles.


Assuntos
Melanoma , Estruturas Linfoides Terciárias , Animais , Anticorpos , Linfócitos B/patologia , Humanos , Melanoma/patologia , Linfócitos T , Estruturas Linfoides Terciárias/patologia
10.
J Clin Invest ; 131(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33945506

RESUMO

Cutaneous melanoma remains the most lethal skin cancer, and ranks third among all malignancies in terms of years of life lost. Despite the advent of immune checkpoint and targeted therapies, only roughly half of patients with advanced melanoma achieve a durable remission. Sirtuin 5 (SIRT5) is a member of the sirtuin family of protein deacylases that regulates metabolism and other biological processes. Germline Sirt5 deficiency is associated with mild phenotypes in mice. Here we showed that SIRT5 was required for proliferation and survival across all cutaneous melanoma genotypes tested, as well as uveal melanoma, a genetically distinct melanoma subtype that arises in the eye and is incurable once metastatic. Likewise, SIRT5 was required for efficient tumor formation by melanoma xenografts and in an autochthonous mouse Braf Pten-driven melanoma model. Via metabolite and transcriptomic analyses, we found that SIRT5 was required to maintain histone acetylation and methylation levels in melanoma cells, thereby promoting proper gene expression. SIRT5-dependent genes notably included MITF, a key lineage-specific survival oncogene in melanoma, and the c-MYC proto-oncogene. SIRT5 may represent a druggable genotype-independent addiction in melanoma.


Assuntos
Cromatina/enzimologia , Melanoma Experimental/enzimologia , Melanoma/enzimologia , Sirtuínas/metabolismo , Neoplasias Cutâneas/enzimologia , Animais , Cromatina/genética , Melanoma/genética , Melanoma/patologia , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Sirtuínas/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Melanoma Maligno Cutâneo
11.
Mol Cancer Res ; 19(6): 991-1004, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33707307

RESUMO

Mucosal melanoma is a rare subtype of melanoma. To date, there has been no comprehensive systematic collation and statistical analysis of the aberrations and aggregated frequency of driver events across multiple studies. Published studies using whole genome, whole exome, targeted gene panel, or individual gene sequencing were identified. Datasets from these studies were collated to summarize mutations, structural variants, and regions of copy-number alteration. Studies using next-generation sequencing were divided into the "main" cohort (n = 173; fresh-frozen samples), "validation" cohort (n = 48; formalin-fixed, paraffin-embedded samples) and a second "validation" cohort comprised 104 tumors sequenced using a targeted panel. Studies assessing mutations in BRAF, KIT, and NRAS were summarized to assess hotspot mutations. Statistical analysis of the main cohort variant data revealed KIT, NF1, BRAF, NRAS, SF3B1, and SPRED1 as significantly mutated genes. ATRX and SF3B1 mutations occurred more commonly in lower anatomy melanomas and CTNNB1 in the upper anatomy. NF1, PTEN, CDKN2A, SPRED1, ATM, CHEK2, and ARID1B were commonly affected by chromosomal copy loss, while TERT, KIT, BRAF, YAP1, CDK4, CCND1, GAB2, MDM2, SKP2, and MITF were commonly amplified. Further notable genomic alterations occurring at lower frequencies indicated commonality of signaling networks in tumorigenesis, including MAPK, PI3K, Notch, Wnt/ß-catenin, cell cycle, DNA repair, and telomere maintenance pathways. This analysis identified genomic aberrations that provide some insight to the way in which specific pathways may be disrupted. IMPLICATIONS: Our analysis has shown that mucosal melanomas have a diverse range of genomic alterations in several biological pathways. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/19/6/991/F1.large.jpg.


Assuntos
Biomarcadores Tumorais/genética , Variações do Número de Cópias de DNA , Genômica/métodos , Melanoma/genética , Mutação , Neoplasias Cutâneas/genética , Predisposição Genética para Doença/genética , Humanos , Melanoma/patologia , Transdução de Sinais/genética , Neoplasias Cutâneas/patologia , Sequenciamento Completo do Genoma/métodos
12.
Clin Cancer Res ; 27(9): 2624-2635, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33589432

RESUMO

PURPOSE: G9a histone methyltransferase exerts oncogenic effects in several tumor types and its inhibition promotes anticancer effects. However, the impact on checkpoint inhibitor blockade response and the utility of G9a or its target genes as a biomarker is poorly studied. We aimed to examine whether G9a inhibition can augment the efficacy of checkpoint inhibitor blockade and whether LC3B, a G9a target gene, can predict treatment response. EXPERIMENTAL DESIGN: Clinical potential of LC3B as a biomarker of checkpoint inhibitor blockade was assessed using patient samples including tumor biopsies and circulating tumor cells from liquid biopsies. Efficacy of G9a inhibition to enhance checkpoint inhibitor blockade was examined using a mouse model. RESULTS: Patients with melanoma who responded to checkpoint inhibitor blockade were associated with not only a higher level of tumor LC3B but also a higher proportion of cells expressing LC3B. A higher expression of MAP1LC3B or LC3B protein was associated with longer survival and lower incidence of acquired resistance to checkpoint inhibitor blockade, suggesting LC3B as a potential predictive biomarker. We demonstrate that G9a histone methyltransferase inhibition is able to not only robustly induce LC3B level to augment the efficacy of checkpoint inhibitor blockade, but also induces melanoma cell death. CONCLUSIONS: Checkpoint inhibitor blockade response is limited to a subset of the patient population. These results have implications for the development of LC3B as a predictive biomarker of checkpoint inhibitor blockade to guide patient selection, as well as G9a inhibition as a strategy to extend the proportion of patients responding to immunotherapy.


Assuntos
Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/farmacologia , Melanoma/metabolismo , Animais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sinergismo Farmacológico , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/diagnóstico , Melanoma/tratamento farmacológico , Melanoma/genética , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Células Neoplásicas Circulantes , Prognóstico , Ensaios Antitumorais Modelo de Xenoenxerto
13.
JCO Clin Cancer Inform ; 5: 143-154, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513031

RESUMO

PURPOSE: Pathogenic BAP1 germline variants cause a tumor-predisposition syndrome (BAP1-TPDS) linked to uveal melanoma, mesothelioma, cutaneous melanoma, and renal cell carcinoma. Surveillance of carriers of pathogenic BAP1 variants provides an opportunity for early tumor detection; however, there are no evidence-based guidelines for management of BAP1-TPDS, nor health economic evaluation; this study aims to provide this evidence. METHODS: We created a Markov microsimulation health state transition model of BAP1 germline carriers to predict if active surveillance for the four main tumors influences survival and improves associated economic costs with a time horizon of 100 years from the perspective of the healthcare system (N = 10,000). Model inputs were derived from data published by the BAP1 Interest Group Consortium and other studies. Management and healthcare costs were extracted from Australian costing schedules (final figures converted to US dollars [USD]), and outcomes compared for individuals receiving surveillance with those in a nonsurveillance arm. Robustness was evaluated on 10,000 iterations of a 100-sample random sampling of the model output. RESULTS: On average, surveillance of BAP1 carriers increased survival by 4.9 years at an additional cost of $6,197 USD for the healthcare system including surveillance costs ($1,265 USD per life year gained). The nonsurveillance arm had more diagnosed late tumors (62.8% v 10.7%) and a higher rate of BAP1-related deaths (50.2% v 35.4%; a 29.5% increase). The model was cost-effective under all sensitivity analyses. Our secondary robustness analysis estimated that 99.86% of 100-sample iterations were cost-effective and 19.67% of these were cost-saving. CONCLUSION: It is recommended that carriers of BAP1 germline variants are identified and undertake active surveillance, as this model suggests that this could improve survival and be cost-effective for the healthcare system.


Assuntos
Melanoma , Neoplasias Cutâneas , Proteínas Supressoras de Tumor , Ubiquitina Tiolesterase , Austrália , Análise Custo-Benefício , Mutação em Linhagem Germinativa , Humanos , Melanoma/diagnóstico , Neoplasias Cutâneas/diagnóstico , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética
15.
Fam Cancer ; 20(3): 231-239, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32989607

RESUMO

Germline mutations in CDKN2A greatly increase risk of developing cutaneous melanoma. We have constructed a risk prediction model, Familial Risk Assessment of Melanoma (FRAMe), for estimating the likelihood of carrying a heritable CDKN2A mutation among Australian families, where the prevalence of these mutations is low. Using logistic regression, we analysed characteristics of 299 Australian families recruited through the Sydney site of GenoMEL (international melanoma genetics consortium) with at least three cases of cutaneous melanoma (in situ and invasive) among first-degree blood relatives, for predictors of the presence of a pathogenic CDKN2A mutation. The final multivariable prediction model was externally validated in an independent cohort of 61 melanoma kindreds recruited through GenoMEL Queensland. Family variables independently associated with the presence of a CDKN2A mutation in a multivariable model were number of individuals diagnosed with melanoma under 40 years of age, number of individuals diagnosed with more than one primary melanoma, and number of individuals blood related to a melanoma case in the first degree diagnosed with any cancer excluding melanoma and non-melanoma skin cancer. The number of individuals diagnosed with pancreatic cancer was not independently associated with mutation status. The risk prediction model had an area under the receiver operating characteristic curve (AUC) of 0.851 (95% CI 0.793, 0.909) in the training dataset, and 0.745 (95%CI 0.612, 0.877) in the validation dataset. This model is the first to be developed and validated using only Australian data, which is important given the higher rate of melanoma in the population. This model will help to effectively identify families suitable for genetic counselling and testing in areas of high ambient ultraviolet radiation. A user-friendly electronic nomogram is available at www.melanomarisk.org.au .


Assuntos
Saúde da Família , Genes p16 , Mutação em Linhagem Germinativa , Melanoma/genética , Neoplasias Cutâneas/genética , Adulto , Fatores Etários , Austrália , Triagem de Portadores Genéticos , Aconselhamento Genético , Humanos , Modelos Logísticos , Melanoma/diagnóstico , Neoplasias Primárias Múltiplas/diagnóstico , Neoplasias Primárias Múltiplas/genética , Neoplasias Pancreáticas/diagnóstico , Valor Preditivo dos Testes , Queensland , Curva ROC , Medição de Risco , Neoplasias Cutâneas/diagnóstico
17.
J Invest Dermatol ; 140(8): 1501-1503, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32709275

RESUMO

Tumors are often polyclonal and are therefore heterogenous in their genomic and molecular profiles, which contributes to drug resistance and treatment failure. The methods used to detect these heterogenous differences in tumor samples are critical, but findings have been hindered by methodological inability to detect low-frequency subclones in bulk DNA. Chang et al. (2020) have addressed some of these methodological issues.


Assuntos
Melanoma , Telomerase , DNA/genética , GTP Fosfo-Hidrolases , Genômica , Humanos , Proteínas de Membrana , Mutação , Proteínas Proto-Oncogênicas B-raf
18.
Hum Mol Genet ; 29(17): 2976-2985, 2020 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-32716505

RESUMO

Cancers, including cutaneous melanoma, can cluster in families. In addition to environmental etiological factors such as ultraviolet radiation, cutaneous melanoma has a strong genetic component. Genetic risks for cutaneous melanoma range from rare, high-penetrance mutations to common, low-penetrance variants. Known high-penetrance mutations account for only about half of all densely affected cutaneous melanoma families, and the causes of familial clustering in the remainder are unknown. We hypothesize that some clustering is due to the cumulative effect of a large number of variants of individually small effect. Common, low-penetrance genetic risk variants can be combined into polygenic risk scores. We used a polygenic risk score for cutaneous melanoma to compare families without known high-penetrance mutations with unrelated melanoma cases and melanoma-free controls. Family members had significantly higher mean polygenic load for cutaneous melanoma than unrelated cases or melanoma-free healthy controls (Bonferroni-corrected t-test P = 1.5 × 10-5 and 6.3 × 10-45, respectively). Whole genome sequencing of germline DNA from 51 members of 21 families with low polygenic risk for melanoma identified a CDKN2A p.G101W mutation in a single family but no other candidate high-penetrance melanoma susceptibility genes. This work provides further evidence that melanoma, like many other common complex disorders, can arise from the joint action of multiple predisposing factors, including rare high-penetrance mutations, as well as via a combination of large numbers of alleles of small effect.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/genética , Predisposição Genética para Doença , Melanoma/genética , Penetrância , Neoplasias Cutâneas/genética , Alelos , Feminino , Mutação em Linhagem Germinativa/genética , Humanos , Masculino , Melanoma/epidemiologia , Melanoma/patologia , Herança Multifatorial/genética , Mutação/genética , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/patologia , Raios Ultravioleta/efeitos adversos , Melanoma Maligno Cutâneo
19.
Nat Commun ; 11(1): 2408, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415113

RESUMO

Uveal melanoma (UM) is the most common intraocular tumour in adults and despite surgical or radiation treatment of primary tumours, ~50% of patients progress to metastatic disease. Therapeutic options for metastatic UM are limited, with clinical trials having little impact. Here we perform whole-genome sequencing (WGS) of 103 UM from all sites of the uveal tract (choroid, ciliary body, iris). While most UM have low tumour mutation burden (TMB), two subsets with high TMB are seen; one driven by germline MBD4 mutation, and another by ultraviolet radiation (UVR) exposure, which is restricted to iris UM. All but one tumour have a known UM driver gene mutation (GNAQ, GNA11, BAP1, PLCB4, CYSLTR2, SF3B1, EIF1AX). We identify three other significantly mutated genes (TP53, RPL5 and CENPE).


Assuntos
Neoplasias da Íris/genética , Neoplasias da Íris/patologia , Melanoma/genética , Melanoma/patologia , Neoplasias Uveais/genética , Neoplasias Uveais/patologia , Linhagem Celular Tumoral , Aberrações Cromossômicas , Biologia Computacional , Análise Mutacional de DNA , Progressão da Doença , Intervalo Livre de Doença , Dosagem de Genes , Genoma Humano , Genômica , Humanos , Estimativa de Kaplan-Meier , Cadeias de Markov , Melanócitos/metabolismo , Mutação , Fenótipo , Prognóstico , Proteína Supressora de Tumor p53/genética , Raios Ultravioleta
20.
Front Cardiovasc Med ; 7: 629933, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33614744

RESUMO

Meta-analyses have indicated that individuals with type 1 or type 2 diabetes are at increased risk of suffering a severe form of COVID-19 and have a higher mortality rate than the non-diabetic population. Patients with diabetes have chronic, low-level systemic inflammation, which results in global cellular dysfunction underlying the wide variety of symptoms associated with the disease, including an increased risk of respiratory infection. While the increased severity of COVID-19 amongst patients with diabetes is not yet fully understood, the common features associated with both diseases are dysregulated immune and inflammatory responses. An additional key player in COVID-19 is the enzyme, angiotensin-converting enzyme 2 (ACE2), which is essential for adhesion and uptake of virus into cells prior to replication. Changes to the expression of ACE2 in diabetes have been documented, but they vary across different organs and the importance of such changes on COVID-19 severity are still under investigation. This review will examine and summarise existing data on how immune and inflammatory processes interplay with the pathogenesis of COVID-19, with a particular focus on the impacts that diabetes, endothelial dysfunction and the expression dynamics of ACE2 have on the disease severity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA