Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Med Inform Decis Mak ; 24(1): 249, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251962

RESUMO

BACKGROUND: Sepsis poses a critical threat to hospitalized patients, particularly those in the Intensive Care Unit (ICU). Rapid identification of Sepsis is crucial for improving survival rates. Machine learning techniques offer advantages over traditional methods for predicting outcomes. This study aimed to develop a prognostic model using a Stacking-based Meta-Classifier to predict 30-day mortality risks in Sepsis-3 patients from the MIMIC-III database. METHODS: A cohort of 4,240 Sepsis-3 patients was analyzed, with 783 experiencing 30-day mortality and 3,457 surviving. Fifteen biomarkers were selected using feature ranking methods, including Extreme Gradient Boosting (XGBoost), Random Forest, and Extra Tree, and the Logistic Regression (LR) model was used to assess their individual predictability with a fivefold cross-validation approach for the validation of the prediction. The dataset was balanced using the SMOTE-TOMEK LINK technique, and a stacking-based meta-classifier was used for 30-day mortality prediction. The SHapley Additive explanations analysis was performed to explain the model's prediction. RESULTS: Using the LR classifier, the model achieved an area under the curve or AUC score of 0.99. A nomogram provided clinical insights into the biomarkers' significance. The stacked meta-learner, LR classifier exhibited the best performance with 95.52% accuracy, 95.79% precision, 95.52% recall, 93.65% specificity, and a 95.60% F1-score. CONCLUSIONS: In conjunction with the nomogram, the proposed stacking classifier model effectively predicted 30-day mortality in Sepsis patients. This approach holds promise for early intervention and improved outcomes in treating Sepsis cases.


Assuntos
Aprendizado de Máquina , Sepse , Humanos , Sepse/mortalidade , Prognóstico , Idoso , Masculino , Feminino , Pessoa de Meia-Idade , Biomarcadores , Unidades de Terapia Intensiva , Nomogramas
2.
Respir Res ; 25(1): 216, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783298

RESUMO

The growing concern of pediatric mortality demands heightened preparedness in clinical settings, especially within intensive care units (ICUs). As respiratory-related admissions account for a substantial portion of pediatric illnesses, there is a pressing need to predict ICU mortality in these cases. This study based on data from 1188 patients, addresses this imperative using machine learning techniques and investigating different class balancing methods for pediatric ICU mortality prediction. This study employs the publicly accessible "Paediatric Intensive Care database" to train, validate, and test a machine learning model for predicting pediatric patient mortality. Features were ranked using three machine learning feature selection techniques, namely Random Forest, Extra Trees, and XGBoost, resulting in the selection of 16 critical features from a total of 105 features. Ten machine learning models and ensemble techniques are used to make accurate mortality predictions. To tackle the inherent class imbalance in the dataset, we applied a unique data partitioning technique to enhance the model's alignment with the data distribution. The CatBoost machine learning model achieved an area under the curve (AUC) of 72.22%, while the stacking ensemble model yielded an AUC of 60.59% for mortality prediction. The proposed subdivision technique, on the other hand, provides a significant improvement in performance metrics, with an AUC of 85.2% and an accuracy of 89.32%. These findings emphasize the potential of machine learning in enhancing pediatric mortality prediction and inform strategies for improved ICU readiness.


Assuntos
Mortalidade Hospitalar , Unidades de Terapia Intensiva Pediátrica , Aprendizado de Máquina , Humanos , Criança , Mortalidade Hospitalar/tendências , Masculino , Feminino , Pré-Escolar , Lactente , Unidades de Terapia Intensiva Pediátrica/estatística & dados numéricos , Bases de Dados Factuais/tendências , Adolescente , Recém-Nascido , Valor Preditivo dos Testes , Doenças Respiratórias/mortalidade , Doenças Respiratórias/diagnóstico
3.
J Clin Med ; 12(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37685724

RESUMO

BACKGROUND: Sepsis, a life-threatening infection-induced inflammatory condition, has significant global health impacts. Timely detection is crucial for improving patient outcomes as sepsis can rapidly progress to severe forms. The application of machine learning (ML) and deep learning (DL) to predict sepsis using electronic health records (EHRs) has gained considerable attention for timely intervention. METHODS: PubMed, IEEE Xplore, Google Scholar, and Scopus were searched for relevant studies. All studies that used ML/DL to detect or early-predict the onset of sepsis in the adult population using EHRs were considered. Data were extracted and analyzed from all studies that met the criteria and were also evaluated for their quality. RESULTS: This systematic review examined 1942 articles, selecting 42 studies while adhering to strict criteria. The chosen studies were predominantly retrospective (n = 38) and spanned diverse geographic settings, with a focus on the United States. Different datasets, sepsis definitions, and prevalence rates were employed, necessitating data augmentation. Heterogeneous parameter utilization, diverse model distribution, and varying quality assessments were observed. Longitudinal data enabled early sepsis prediction, and quality criteria fulfillment varied, with inconsistent funding-article quality correlation. CONCLUSIONS: This systematic review underscores the significance of ML/DL methods for sepsis detection and early prediction through EHR data.

4.
Cancers (Basel) ; 15(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37370799

RESUMO

Kidney cancers are one of the most common malignancies worldwide. Accurate diagnosis is a critical step in the management of kidney cancer patients and is influenced by multiple factors including tumor size or volume, cancer types and stages, etc. For malignant tumors, partial or radical surgery of the kidney might be required, but for clinicians, the basis for making this decision is often unclear. Partial nephrectomy could result in patient death due to cancer if kidney removal was necessary, whereas radical nephrectomy in less severe cases could resign patients to lifelong dialysis or need for future transplantation without sufficient cause. Using machine learning to consider clinical data alongside computed tomography images could potentially help resolve some of these surgical ambiguities, by enabling a more robust classification of kidney cancers and selection of optimal surgical approaches. In this study, we used the publicly available KiTS dataset of contrast-enhanced CT images and corresponding patient metadata to differentiate four major classes of kidney cancer: clear cell (ccRCC), chromophobe (chRCC), papillary (pRCC) renal cell carcinoma, and oncocytoma (ONC). We rationalized these data to overcome the high field of view (FoV), extract tumor regions of interest (ROIs), classify patients using deep machine-learning models, and extract/post-process CT image features for combination with clinical data. Regardless of marked data imbalance, our combined approach achieved a high level of performance (85.66% accuracy, 84.18% precision, 85.66% recall, and 84.92% F1-score). When selecting surgical procedures for malignant tumors (RCC), our method proved even more reliable (90.63% accuracy, 90.83% precision, 90.61% recall, and 90.50% F1-score). Using feature ranking, we confirmed that tumor volume and cancer stage are the most relevant clinical features for predicting surgical procedures. Once fully mature, the approach we propose could be used to assist surgeons in performing nephrectomies by guiding the choices of optimal procedures in individual patients with kidney cancer.

5.
Diagnostics (Basel) ; 13(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37296800

RESUMO

Heart failure is a devastating disease that has high mortality rates and a negative impact on quality of life. Heart failure patients often experience emergency readmission after an initial episode, often due to inadequate management. A timely diagnosis and treatment of underlying issues can significantly reduce the risk of emergency readmissions. The purpose of this project was to predict emergency readmissions of discharged heart failure patients using classical machine learning (ML) models based on Electronic Health Record (EHR) data. The dataset used for this study consisted of 166 clinical biomarkers from 2008 patient records. Three feature selection techniques were studied along with 13 classical ML models using five-fold cross-validation. A stacking ML model was trained using the predictions of the three best-performing models for final classification. The stacking ML model provided an accuracy, precision, recall, specificity, F1-score, and area under the curve (AUC) of 89.41%, 90.10%, 89.41%, 87.83%, 89.28%, and 0.881, respectively. This indicates the effectiveness of the proposed model in predicting emergency readmissions. The healthcare providers can intervene pro-actively to reduce emergency hospital readmission risk and improve patient outcomes and decrease healthcare costs using the proposed model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA