Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Semin Cancer Biol ; 59: 133-146, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31408722

RESUMO

Breast cancer is the major cause of deaths in women worldwide. Detection and treatment of breast cancer at earlier stages of the disease has shown encouraging results. Modern genomic technologies facilitated several therapeutic options however the diagnosis of the disease at an advanced stage claim more deaths. Therefore more research directed towards genomics and proteomics into this area may lead to novel biomarkers thereby enhancing the survival rates in breast cancer patients. Phosphoinositide-3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway was shown to be hyperactivated in most of the breast carcinomas resulting in excessive growth, proliferation, and tumor development. Development of nanotechnology has provided many interesting avenues to target the PI3K/Akt/mTOR pathway both at the pre-clinical and clinical stages. Therefore, the current review summarizes the underlying mechanism and the importance of targeting PI3K/Akt/mTOR pathway, novel biomarkers and use of nanotechnological interventions in breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Terapia de Alvo Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Nanomedicina Teranóstica , Biomarcadores Tumorais , Neoplasias da Mama/patologia , Feminino , Humanos , Nanotecnologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pesquisa Translacional Biomédica
2.
Bioinformation ; 4(3): 123-6, 2009 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-20198185

RESUMO

Ribonucleotide Reductase (RNR) is an enzyme responsible for the reduction of ribonucleotides to their corresponding Deoxyribonucleotides (DNA), which is a building block for DNA replication and repair mechanisms. The key role of RNR in DNA synthesis and control in cell growth has made this an important target for anticancer therapy. Increased RNR activity has been associated with malignant transformation and tumor cell growth. In recent years, several RNR inhibitors, including Triapine, Gemcitabine and GTI-2040, have entered the clinical trials. Our current work focuses on an attempted to dock this inhibitors Flavin and Phenosafranine to curtail the action of human RNR2. The docked inhibitor Flavin and Phenosafranine binds at the active site with THR176, which are essential for free radical formation. The inhibitor must be a radical scavenger to destroy the tyrosyl radical or iron metal scavenger. The iron or radical site of R2 protein can react with one-electron reductants, whereby the tyrosyl radical is converted to a normal tyrosine residue. However, compounds such as Flavin and Phenosafranine were used in most of the cases to reduce the radical activity. The docking study was performed for the crystal structure of human RNR with the radical scavengers Flavin and Phenosafranine to inhibit the human RNR2. This helps to understand the functional aspects and also aids in the development of novel inhibitors for the human RNR2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA