Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(19): 12117-12133, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38648373

RESUMO

Ulcerative colitis is a chronic condition in which a dysregulated immune response contributes to the acute intestinal inflammation of the colon. Current clinical therapies often exhibit limited efficacy and undesirable side effects. Here, programmable nanomicelles were designed for colitis treatment and loaded with RU.521, an inhibitor of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. STING-inhibiting micelles (SIMs) comprise hyaluronic acid-stearic acid conjugates and include a reactive oxygen species (ROS)-responsive thioketal linker. SIMs were designed to selectively accumulate at the site of inflammation and trigger drug release in the presence of ROS. Our in vitro studies in macrophages and in vivo studies in a murine model of colitis demonstrated that SIMs leverage HA-CD44 binding to target sites of inflammation. Oral delivery of SIMs to mice in both preventive and delayed therapeutic models ameliorated colitis's severity by reducing STING expression, suppressing the secretion of proinflammatory cytokines, enabling bodyweight recovery, protecting mice from colon shortening, and restoring colonic epithelium. In vivo end points combined with metabolomics identified key metabolites with a therapeutic role in reducing intestinal and mucosal inflammation. Our findings highlight the significance of programmable delivery platforms that downregulate inflammatory pathways at the intestinal mucosa for managing inflammatory bowel diseases.


Assuntos
Colite Ulcerativa , Proteínas de Membrana , Micelas , Nucleotidiltransferases , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/induzido quimicamente , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Humanos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo
2.
bioRxiv ; 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36798310

RESUMO

LF82, an adherent invasive Escherichia coli pathobiont, is associated with ileal Crohn's disease, an inflammatory bowel disease of unknown etiology. Although LF82 contains no virulence genes, it carries several genetic differences, including single nucleotide polymorphisms (SNPs), that distinguish it from nonpathogenic E. coli. We have identified and investigated an extremely rare SNP that is within the highly conserved rpoD gene, encoding σ70, the primary sigma factor for RNA polymerase. We demonstrate that this single residue change (D445V) results in specific transcriptome and phenotypic changes that are consistent with multiple phenotypes observed in LF82, including increased antibiotic resistance and biofilm formation, modulation of motility, and increased capacity for methionine biosynthesis. Our work demonstrates that a single residue change within the bacterial primary sigma factor can lead to multiple alterations in gene expression and phenotypic changes, suggesting an underrecognized mechanism by which pathobionts and other strain variants with new phenotypes can emerge.

4.
mSystems ; 7(5): e0029322, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35968975

RESUMO

Animals colonized with a defined microbiota represent useful experimental systems to investigate microbiome function. The altered Schaedler flora (ASF) represents a consortium of eight murine bacterial species that have been used for more than 4 decades where the study of mice with a reduced microbiota is desired. In contrast to germ-free mice, or mice colonized with only one or two species, ASF mice show the normal gut structure and immune system development. To further expand the utility of the ASF, we have developed technical and bioinformatic resources to enable a systems-based analysis of microbiome function using this model. Here, we highlighted four distinct applications of these resources that enable and improve (i) measurements of the abundance of each ASF member by quantitative PCR; (ii) exploration and comparative analysis of ASF genomes and the metabolic pathways they encode that comprise the entire gut microbiome; (iii) global transcriptional profiling to identify genes whose expression responds to environmental changes within the gut; and (iv) discovery of genetic changes resulting from the evolutionary adaptation of the microbiota. These resources were designed to be accessible to a broad community of researchers that, in combination with conventionally-reared mice (i.e., with complex microbiome), should contribute to our understanding of microbiome structure and function. IMPORTANCE Improved experimental systems are needed to advance our understanding of how the gut microbiome influences processes of the mammalian host as well as microbial community structure and function. An approach that is receiving considerable attention is the use of animal models that harbor a stable microbiota of known composition, i.e., defined microbiota, which enables control over an otherwise highly complex and variable feature of mammalian biology. The altered Schaedler flora (ASF) consortium is a well-established defined microbiota model, where mice are stably colonized with 8 distinct murine bacterial species. To take better advantage of the ASF, we established new experimental and bioinformatics resources for researchers to make better use of this model as an experimental system to study microbiome function.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Microbiota/genética , Modelos Animais de Doenças , Microbioma Gastrointestinal/genética , Bactérias/genética , Reação em Cadeia da Polimerase , Mamíferos/genética
5.
PLoS One ; 17(4): e0266005, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35381031

RESUMO

The gastrointestinal microbiota begins to be acquired at birth and continually matures through early adolescence. Despite the relevance for gut health, few studies have evaluated the impact of pathobiont colonization of neonates on the severity of colitis later in life. LF82 is an adherent invasive E. coli strain associated with ileal Crohn's disease. The aim of this study was to evaluate the severity of dextran sodium sulfate (DSS)-induced colitis in mice following E. coli LF82 colonization. Gnotobiotic mice harboring the altered Schaedler flora (ASF) were used as the model. While E. coli LF82 is neither adherent nor invasive, it was been demonstrated that adult ASF mice colonized with E. coli LF82 develop more severe DSS-induced colitis compared to control ASF mice treated with DSS. Therefore, we hypothesized that E. coli LF82 colonization of neonatal ASF mice would reduce the severity of DSS-induced inflammation compared to adult ASF mice colonized with E. coli LF82. To test this hypothesis, adult ASF mice were colonized with E. coli LF82 and bred to produce offspring (LF82N) that were vertically colonized with LF82. LF82N and adult-colonized (LF82A) mice were given 2.0% DSS in drinking water for seven days to trigger colitis. More severe inflammatory lesions were observed in the LF82N + DSS mice when compared to LF82A + DSS mice, and were characterized as transmural in most of the LF82N + DSS mice. Colitis was accompanied by secretion of proinflammatory cytokines (IFNγ, IL-17) and specific mRNA transcripts within the colonic mucosa. Using 16S rRNA gene amplicon sequencing, LF82 colonization did not induce significant changes in the ASF community; however, minimal changes in spatial redistribution by fluorescent in situ hybridization were observed. These results suggest that the age at which mice were colonized with E. coli LF82 pathobiont differentially impacted severity of subsequent colitic events.


Assuntos
Colite , Escherichia coli , Animais , Animais Recém-Nascidos , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana/toxicidade , Hibridização in Situ Fluorescente , Mucosa Intestinal/patologia , Camundongos , RNA Ribossômico 16S
6.
Microbiol Spectr ; 9(2): e0124321, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34550001

RESUMO

While Clostridioides difficile is recognized as an important human pathogen, it is also a significant cause of gastroenteritis and associated diarrhea in neonatal pigs. Since clinical disease is rarely diagnosed in piglets older than 1 week of age, it is hypothesized that natural resistance is associated with the increased complexity of the intestinal microbiota as the animals age. To test this, piglets were challenged with C. difficile (ribotype 078/toxinotype V) at times ranging from 2 to 14 days of age, and the severity of disease and microbial diversity of the cecal microbiota were assessed. Half of the piglets that were challenged with C. difficile at 2 and 4 days of age developed clinical signs of disease. The incidence of disease decreased rapidly as the piglets aged, to a point where none of the animals challenged after 10 days of age showed clinical signs. The cecal microbial community compositions of the piglets also clustered by age, with those of animals 2 to 4 days old showing closer relationships to one another than to those of older piglets (8 to 14 days). This clustering occurred across litters from 4 different sows, providing further evidence that the resistance to C. difficile disease in piglets greater than 1 week old is directly related to the diversity and complexity of the intestinal microbiota. IMPORTANCE C. difficile is an important bacterial pathogen that is the most common cause of infections associated with health care in the United States. It also causes significant morbidity and mortality in neonatal pigs, and currently there are no preventative treatments available to livestock producers. This study determined the age-related susceptibility of piglets to C. difficile over the first 2 weeks of life, along with documenting the natural age-related changes that occurred in the intestinal microbiota over the same time period in a controlled environment. We observed that the populations of intestinal bacteria within individual animals of the same age, regardless of litter, showed the highest degree of similarity. Identifying bacterial species associated with the acquisition of natural resistance observed in older pigs could lead to the development of new strategies to prevent and or treat disease caused by C. difficile infection.


Assuntos
Clostridioides difficile/fisiologia , Infecções por Clostridium/veterinária , Diarreia/veterinária , Microbioma Gastrointestinal , Doenças dos Suínos/prevenção & controle , Fatores Etários , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Clostridioides difficile/genética , Infecções por Clostridium/microbiologia , Infecções por Clostridium/prevenção & controle , Diarreia/microbiologia , Fezes/microbiologia , Feminino , Intestinos/microbiologia , Masculino , Suínos , Doenças dos Suínos/microbiologia
7.
Environ Health Perspect ; 129(8): 87005, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34410835

RESUMO

BACKGROUND: Chronic environmental exposure to manganese (Mn) can cause debilitating damage to the central nervous system. However, its potential toxic effects on the enteric nervous system (ENS) have yet to be assessed. OBJECTIVE: We examined the effect of Mn on the ENS using both cell and animal models. METHOD: Rat enteric glial cells (EGCs) and mouse primary enteric cultures were exposed to increasing concentrations of Mn and cell viability and mitochondrial health were assessed using various morphological and functional assays. C57BL/6 mice were exposed daily to a sublethal dose of Mn (15mg/kg/d) for 30 d. Gut peristalsis, enteric inflammation, gut microbiome profile, and fecal metabolite composition were assessed at the end of exposure. RESULTS: EGC mitochondria were highly susceptible to Mn neurotoxicity, as evidenced by lower mitochondrial mass, adenosine triphosphate-linked respiration, and aconitase activity as well as higher mitochondrial superoxide, upon Mn exposure. Minor differences were seen in the mouse model: specifically, longer intestinal transit times and higher levels of colonic inflammation. CONCLUSION: Based on our findings from this study, Mn preferentially induced mitochondrial dysfunction in a rat EGC line and in vivo resulted in inflammation in the ENS. https://doi.org/10.1289/EHP7877.


Assuntos
Sistema Nervoso Entérico , Microbioma Gastrointestinal , Animais , Manganês/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Ratos
8.
Front Vet Sci ; 6: 114, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31058171

RESUMO

Antibiotics have been used extensively for growth promotion in poultry, along with other food production animals, as well as therapeutically to treat infectious diseases. However, with concerns over selection for drug antibiotic resistant bacteria the practice of using subtherapeutic doses of antibiotics is under increased scrutiny. Consequently, we assessed the impact of the commonly used antibiotic bacitracin methylene disalicylate (BMD) on the gastrointestinal microbiota of chickens. For this we administered therapeutic doses of BMD as a feed additive and 16s rRNA gene amplicon sequencing to measure changes in taxonomic abundance on the distal colon and cecal microbiota of young broiler chickens. While BMD treatment was found to impact the abundance of selected taxa and overall beta diversity, significant changes were, in general, limited to the colon of the treated birds. Selected taxa at the phylum, class, and genus levels that were most impacted were identified. The composition of the cecum remained relatively stable in BMD-treated animals. As poultry production practices seek alternatives to growth promoting antibiotic feed additives, manipulation of the gastrointestinal microbiota holds promise. These results suggest that targeting the cecum may offer a means to promote changes to the microbiota that maximize the benefits for the hosts.

9.
Am J Primatol ; 79(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28898440

RESUMO

The lower reproductive tract of nonhuman primates is colonized with a diverse microbiota, resembling bacterial vaginosis (BV), a gynecological condition associated with negative reproductive outcomes in women. Our 4 aims were to: (i) assess the prevalence of low Lactobacilli and a BV-like profile in female rhesus monkeys; (ii) quantify cytokines in their cervicovaginal fluid (CVF); (iii) examine the composition and structure of their mucosal microbiota with culture-independent sequencing methods; and (iv) evaluate the potential influence on reproductive success. CVF specimens were obtained from 27 female rhesus monkeys for Gram's staining, and to determine acidity (pH), and quantify proinflammatory cytokines. Based on Nugent's classification, 40% had a score of 7 or higher, which would be indicative of BV in women. Nugent scores were significantly correlated with the pH of the CVF. Interleukin-1ß was present at high concentrations, but not further elevated by high Nugent scores. Vaginal swabs were obtained from eight additional females to determine microbial diversity by rRNA gene amplicon sequencing. At the phylum level, the Firmicutes/Bacteroidetes ratio was low. The relative abundance of Lactobacilli was also low (between 3% and 17%), and 11 other genera were present at >1%. However, neither the microbial diversity in the community structure, nor high Nugent scores, was associated with reduced fecundity. Female monkeys provide an opportunity to understand how reproductive success can be sustained in the presence of a diverse polymicrobial community in the reproductive tract.


Assuntos
Lactobacillus , Macaca mulatta/microbiologia , Vaginose Bacteriana/veterinária , Animais , Feminino , Microbiota , Reprodução , Vagina
10.
Psychosom Med ; 79(8): 888-897, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28178033

RESUMO

OBJECTIVE: Our aim was to evaluate the bacterial profiles of young monkeys as they were weaned into peer groups with a particular focus on Prevotella, an important taxon in both human and nonhuman primates. The weaning of infants and increased social contact with peers is a developmental stage that is likely to affect the gut microbiome. METHODS: Gut bacteria were assessed in 63 rhesus monkeys living in social groups comprised of 4 to 7 individuals. Two groups were assessed prospectively on day 1 and 2 weeks after rehousing away from the mother and group formation. Ten additional groups were assessed at 2 weeks after group establishment. Fecal genomic DNA was extracted and 16S ribosomal RNA sequenced by Illumina MiSeq (5 social groups) and 454-amplicon pyrosequencing (7 social groups). RESULTS: Combining weaned infants into small social groups led to a microbial convergence by 2 weeks (p < .001). Diversity analyses indicated more similar community structure within peer groups than across groups (p < .01). Prevotella was the predominant taxon, and its abundance differed markedly across individuals. Indices of richness, microbial profiles, and less abundant taxa were all associated with the Prevotella levels. Functional Kyoto Encyclopedia of Genes and Genomes analyses suggested corresponding shifts in metabolic pathways. CONCLUSIONS: The formation of small groups of young rhesus monkeys was associated with significant shifts in the gut microbiota. The profiles were closely associated with the abundance of Prevotella, a predominant taxon in the rhesus monkey gut. Changes in the structure of the gut microbiome are likely to induce differences in metabolic and physiologic functioning.


Assuntos
Comportamento Animal/fisiologia , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Prevotella , Comportamento Social , Animais , Feminino , Macaca mulatta , Masculino , Prevotella/genética , Prevotella/isolamento & purificação , RNA Ribossômico 16S
11.
Inflamm Bowel Dis ; 22(11): 2571-2581, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27755267

RESUMO

BACKGROUND: Helicobacter bilis infection of C3H/HeN mice harboring the altered Schaedler flora (ASF) triggers progressive immune responsiveness and the development of colitis. We sought to investigate temporal alterations in community structure of a defined (ASF-colonized) microbiota in normal and inflamed murine intestines and to correlate microbiota changes to histopathologic lesions. METHODS: The colonic mucosal microbiota of healthy mice and ASF mice colonized with H. bilis for 3, 6, or 12 weeks were investigated by fluorescence in situ hybridization targeting the 16S ribosomal RNA genes of total bacteria, group-specific organisms, and individual ASF bacterial species. Microbial profiling of ASF and H. bilis abundance was performed on cecal contents. RESULTS: Helicobacter bilis-colonized mice developed colitis associated with temporal changes in composition and spatial distribution of the mucosal microbiota. The number of total bacteria, ASF519, and helicobacter-positive bacteria were increased (P < 0.05), whereas ASF360/361-positive bacteria were decreased (P < 0.05) versus controls. Adherent biofilms in colitic mice were most often (P < 0.05) composed of total bacteria, ASF457, and H. bilis. Total numbers of ASF519 and H. bilis bacteria were positively correlated (P = 0.03, r = 0.39 and P < 0.0001, r = 0.73), and total numbers of ASF360/361 bacteria were negatively correlated (P = 0.003, r = -0.53) to histopathologic score. Differences in cecal abundance of ASF members were not observed. CONCLUSIONS: Altered community structure with murine colitis is characterized by distinct ASF bacteria that interact with the colonic mucosa, by formation of an isolating interlaced layer, by attachment, or by invasion, and this interaction is differentially expressed over time.


Assuntos
Colite/microbiologia , Microbioma Gastrointestinal/fisiologia , Infecções por Helicobacter/microbiologia , Helicobacter , Mucosa Intestinal/microbiologia , Animais , Ceco/microbiologia , Colo/microbiologia , Feminino , Infecções por Helicobacter/complicações , Masculino , Camundongos , Camundongos Endogâmicos C3H
12.
PLoS One ; 11(1): e0146406, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26745269

RESUMO

The increasing recognition that the gut microbiota plays a central role in behavior and cognition suggests that the manipulation of microbial taxa through diet may provide a means by which behavior may be altered in a reproducible and consistent manner in order to achieve a beneficial outcome for the host. Resistant starch continues to receive attention as a dietary intervention that can benefit the host through mechanisms that include altering the intestinal microbiota. Given the interest in dietary approaches to improve health, the aim of this study was to investigate whether the use of dietary resistant starch in mice to alter the gut microbiota also results in a change in behavior. Forty-eight 6 week-old male Swiss-Webster mice were randomly assigned to 3 treatment groups (n = 16 per group) and fed either a normal corn starch diet (NCS) or diets rich in resistant starches HA7 diet (HA7) or octenyl-succinate HA7 diet (OS-HA7) for 6 week and monitored for weight, behavior and fecal microbiota composition. Animals fed an HA7 diet displayed comparable weight gain over the feeding period to that recorded for NCS-fed animals while OS-HA7 displayed a lower weight gain as compared to either NCS or HA7 animals (ANOVA p = 0.0001; NCS:HA7 p = 0.244; HA7:OS-HA7 p<0.0001; NCS:OS-HA7 p<0.0001). Analysis of fecal microbiota using 16s rRNA gene taxonomic profiling revealed that each diet corresponded with a unique gut microbiota. The distribution of taxonomic classes was dynamic over the 6 week feeding period for each of the diets. At the end of the feeding periods, the distribution of taxa included statistically significant increases in members of the phylum Proteobacteria in OS-HA7 fed mice, while the Verrucomicrobia increased in HA7 fed mice over that of mice fed OS-HA7. At the class level, members of the class Bacilli decreased in the OS-HA7 fed group, and Actinobacteria, which includes the genus Bifidobacteria, was enriched in the HA7 fed group compared to the control diet. Behavioral analysis revealed that animals demonstrated profound anxiety-like behavior as observed by performance on the elevated-plus maze with time spent by the mice in the open arm (ANOVA p = 0.000; NCS:HA7 p = 0.004; NCS:OS-HA7 p = 1.000; HA7:OS-HA7 p = 0.0001) as well as entries in the open arm (ANOVA p = 0.039; NCS:HA7 p = 0.041; HA7:OS-HA7 p = 0.221; NCS:OS-HA7 p = 1.000). Open-field behavior, a measure of general locomotion and exploration, revealed statistically significant differences between groups in locomotion as a measure of transitions across quadrant boundaries. Additionally, the open-field assay revealed decreased exploration as well as decreased rearing in HA7 and OS-HA7 fed mice demonstrating a consistent pattern of increased anxiety-like behavior among these groups. Critically, behavior was not correlated with weight. These results indicate that diets based on resistant starch can be utilized to produce quantifiable changes in the gut microbiota and should be useful to "dial-in" a specific microbiome that is unique to a particular starch composition. However, undesirable effects can also be associated with resistant starch, including lack of weight gain and increased anxiety-like behaviors. These observations warrant careful consideration when developing diets rich in resistant starch in humans and animal models.


Assuntos
Comportamento Animal/efeitos dos fármacos , Carboidratos da Dieta/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Metagenoma/efeitos dos fármacos , Amido/farmacologia , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Animais , Ansiedade/induzido quimicamente , Ansiedade/fisiopatologia , Bacillaceae/classificação , Bacillaceae/genética , Bacillaceae/isolamento & purificação , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Dieta , Carboidratos da Dieta/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Humanos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Metagenoma/genética , Camundongos , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Amido/metabolismo , Verrucomicrobia/classificação , Verrucomicrobia/genética , Verrucomicrobia/isolamento & purificação , Aumento de Peso/efeitos dos fármacos
13.
ILAR J ; 56(2): 169-78, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26323627

RESUMO

The gastrointestinal (GI) microbiota forms a mutualistic relationship with the host through complex and dynamic interactions. Because of the complexity and interindividual variation of the GI microbiota, investigating how members of the microbiota interact with each other, as well as with the host, is daunting. The altered Schaedler flora (ASF) is a model community of eight microorganisms that was developed by R.P. Orcutt and has been in use since the late 1970s. The eight microorganisms composing the ASF were all derived from mice, can be cultured in vitro, and are stably passed through multiple generations (at least 15 years or more by the authors) in gnotobiotic mice continually bred in isolator facilities. With the limitations associated with conventional, mono- or biassociated, and germfree mice, use of mice colonized with a consortium of known bacteria that naturally inhabit the murine gut offers a powerful system to investigate mechanisms governing host-microbiota relationships, and how members of the GI microbiota interact with one another. The ASF community offers significant advantages to study homeostatic as well as disease-related interactions by taking advantage of a well-defined, limited community of microorganisms. For example, quantification and spatial distribution of individual members, microbial genetic manipulation, genomic-scale analysis, and identification of microorganism-specific host immune responses are all achievable using the ASF model. This review compiles highlights associated with the 37-year history of the ASF, including descriptions of its continued use in biomedical research to elucidate the complexities of host-microbiome interactions in health and disease.


Assuntos
Microbioma Gastrointestinal/fisiologia , Animais , Bactérias/metabolismo , Microbioma Gastrointestinal/genética , Vida Livre de Germes/genética , Vida Livre de Germes/fisiologia , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA